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Abstract: We propose an approach and the numerical algorithm for mapping the electroencephalographic
(EEG) data from the scalp to the cortex. The algorithm is based on the solution of ill-posed Cauchy problem
for the Laplace’s equation using tetrahedral finite elements. The FEM-based scheme allows to calculate the
volumetric distribution of a potential over the head volume. We demonstrate the usage of the the algorithm
for accurate estimation of the depth of electric sources in the head. The algorithm sufficiently increases the
spatial resolution of the EEG technique making it comparable with intracranial techniques.
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1 Introduction
The majority of existing methods for electroencephalographic (EEG) data processing and source analysis
falls into the following categories: parametric inversions (the dipole fitting), current-reconstruction methods
(see, e.g., [2, 16, 18, 26, 31, 32]) and, somewhat less frequently, beamforming methods (see, e.g., [19, 28,
35, 37]). The approaches are very different (sometimes, fundamentally). All of them, however, use the EEG
measurements as input data and, thus, highly depend on its quality.

The measured electric potential is strongly distorted by outer (with respect to the brain) head tissues.
In biomedical applications, the conductivity distribution over the head tissues varies within a considerable
interval. For example, the conductivity of the brain is about one order greater than the conductivity of the
tissues located outside the brain (see, e.g., [23, 30]). This fact causes distortion of the electric potential
measured on the outer surface of the domain (head). The current research is aimed to improve the quality
of EEG data, partially excluding the influence of the outer tissues on the EEG signal.

Since the outer compartments (tissues) do not contain any sources producing the objective signal, the
electric potential related to the brain sources satisfies the Laplace’s equation there. Measuring the poten-
tial on the part of the head surface makes it possible to state the Cauchy problem for the Laplace’s equation
in order to map the data from the scalp to the brain surface. Such mapping is an auxiliary problem, allow-
ing to sufficiently increase the accuracy of source localization due to better quality and spatial resolution of
input data.
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The Cauchy problem for the data mapping in the context of EEG was considered in [9], where authors
propose to use the boundary element method (BEM) in order to construct the cost functional for further min-
imization of it. The BEM, however, has some drawbacks related to the geometry of the calculation domain
and method accuracy in comparison with finite element method (FEM) (see, e.g., [1, 13]).

In the current paper, we use the technique based on the mixed quasi-reversibility (MQR) method with
linear finite elements proposed by L.Bourgeois in [5]. The method allows to reduce the Cauchy problem to
a system of linear equations per compartment, built using two regularization parameters, the choice of which
is also considered in [5, 6]. Aswe show later, the applicationof our algorithmenablesus to “focus” ameasured
signal, sufficiently improving its spatial resolution even in complicated cases of in-brain source currents.

We also stress on the fact that the potential is being calculated not only on interfaces. Applying the pro-
posed algorithm, we reconstruct the volumetric potential distribution over the head subdomains, which do
not contain electric sources. Surprisingly, the considered technique can be used also for estimation of the
depth of the electric sources, which fact makes possible to state a set of important problems like estimation
of the cortex form (without MRI/CT images) or estimation of the electric conductivity of the head tissues. The
latter one varies in a wide range depending on many factors: the employed method, the tissue temperature
(room or body), the applied current frequency and the measurement condition (i.e., in vivo, in vitro or ex
vivo), as well as the participant demographics (age, pathology) (see [27]).

Regarding practical use of the proposed method, it can be applied either directly to detect active parts
of the cortex or as an intermediate procedure to propagate data from scalp to cortex before employing other
processing techniques. Though, in this study, we focused only on mathematical and numerical aspects, we
believe that the proposed method may serve as a basis for fast and accurate algorithms for analysis of real
EEG data.

The paper is organized as follows. In Section 2, we describe the conductivity model of the human head,
discuss the approximations being used and write out the governing equation of the EEG. In Section 3, we
discuss the Laplace’s equation for the sourceless compartments of the head and present some important
notes about our implementation of the MQR method. Also, in the same section, we present our both proved
and heuristic criteria for estimation of the source on the base of Cauchy problem solutions. Section 4 presents
some numerical results and discussion. Concluding remarks are given in Section 5.

2 Mathematical description of EEG
This section is aimed to introduce the notations, whichwill be used in the paper, and remind the reader about
some aspects of EEG together with its assumptions and equations.

2.1 The computational domain and sources

The head volume in general and the brain in particular consist of many parts and organs: scalp, skull bone,
cerebrospinal fluid (CSF), the brain itself and its components. Using the macroscopic approximation, we
assume the conductivity to be identical across the particular compartment of the head, i.e., we expect the
conductivity to be the piecewise-constant distribution over the computational domain.

Consider the domain Ω ⊂ ℝ3 with a piecewise-smooth boundary ∂Ω. The domain under consideration
represents the volume of the head and is assumed to consist of several subdomains

Ωi , i = 1, . . . , Nd : Ω =
Nd

⋃
i=1

Ωi ,

representing Nd organs inside the head (see Figure 1 (a). Each organ is expected to have a constant elec-
tric conductivity σi , i = 1, . . . , Nd (see [23]). We further assume a nested domain topology of the introduced
partitioning.
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(a) (b)

Figure 1: Computational domains and boundaries: (a) the nested domains topology; (b) the simplified model used in the current
work. The measurement area Γ is highlighted with the thick red line.

The conductivities of outer (with respect to the human brain) tissues are much lesser than the conduc-
tivity of the brain itself (see, e.g., [23, 30]). We also note that the area of measurements in the case of EEG
is located at the top of a head, which leads to respectively small thickness of those outer tissues. Regard-
ing to this facts, for simplicity, we take into account only simple head model consisting of two domains (see
Figure 1 (b): the brain is represented by the inner domain Ω2 with the conductivity σ2 equal to the conduc-
tivity of the cortex, and the outer tissues (scalp, skull, cerebrospinal fluid, etc.) are described by the only
one outer domain Ω1 with averaged conductivity σ1. We noticed in our numerical experiments that this sim-
plification leads to respective error 2% to 4% in our calculations. Thus, this simplification can be applied
to real (experimental) data. Further, in order to make the presentation clearer, we will consider only the
latter structure.

We denote the outer boundary of each domain Ωm as ∂Ωm for m = 1, 2. For convenience, indexing can
be done starting from outer domain representing scalp, skull and CSF to inner one representing the brain. In
such away, the outer domain Ω1 is bounded by the surfaces ∂Ω1 (outer surface) and ∂Ω2 (inner surface). The
outer head surface in such indexing is ∂Ω ≡ ∂Ω1.

In the EEG technique, the measurements are being performed in a bounded area of the surface located
commonly at the top of a head. In further consideration, this part of the boundary, which we call accessible
part of the boundary, is represented by the portion of the outer surface Γ ⊂ ∂Ω1 (see Figure 1).

For further discussion we also need to introduce the rest of the boundary Π of the subdomain Ω1, which
we call inaccessible part of the boundary. This portion contains unknown data, which we will need to restore

Π = (∂Ω1 \ Γ) ∪ ∂Ω2.

EEGmethodmeasures the electric potential generated by the biochemical currents inside the head. There
are two main kinds of such currents: currents generated by the brain and the muscle currents. Since the EEG
technique aims to study the electric activity of the brain, the signal of interest is generated by brain currents.
Muscle currents have much higher frequencies and thus can be easily filtered. Therefore, we can assume the
current sources are located only inside the brain (more accurately - on the brain surface), while all other areas
do not contain electric sources: supp J(x) ⊂ Ω2.

Remark 2.1. Real EEG measurements are being provided with a device consisting of some number of elec-
trodes (channels). After measurement, the data processing may include or not include the interpolation
(so-called channel interpolation) in order to obtain the signal not only in particular points – sensors posi-
tions, but also at each point ofmeasurement area Γ. There is a number of works devoted to such interpolation
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(see, for example, [10, 11, 29, 36]), which take into account the shape of the head, properties of harmonic
functions, etc. In the current article we, however, do not consider these procedures, assuming the signal be
already interpolated and, consequently, known at each point x ∈ Γ.

2.2 Governing equation

As mentioned above, the conductivity σ(x), x ∈ Ω, is assumed to be a piecewise-constant function over the
volume under consideration (head). The conductivity of the media outside the head expected to be zero:

σ(x) =
{
{
{

σi , x ∈ Ωi ⊂ Ω,
0, x ∉ Ω.

Given the frequencies of the neural currents within the interval of 1–100 Hz, the quasi-static approxi-
mation is justified. This was proved in numerous well-known works on EEG, e.g., [13, 17, 33, 34, 38].

Let the volumetric distribution of a primary neuronal current density (the source) be denoted as Jp. Under
the assumptions, the electric potential U(x) satisfies the equation

∇ ⋅ (σ∇U) = ∇ ⋅ Jp , x ∈ Ω. (2.1)

The potential further satisfies the zero Neumann boundary condition on ∂Ω:

n ⋅ ∇U = 0, x ∈ ∂Ω. (2.2)

The zeroNeumannboundary condition follows from the assumption of zero conductivity of themedia outside
the head [13].

We assume the existence of the accessible part of the boundary Γ ⊂ Ω (described in Section 2.1), onwhich
the electric potential U(x) is known:

U|Γ = u(x), Γ ⊂ ∂Ω ⊂ ℝ3. (2.3)

Remark 2.2. Equation (2.1) contains the conductivity coefficient σ(x), which can be obtained using adjust-
ment of known conductivity values with the images of geometry of the tissues, obtained with the magnetic
resonance imaging (MRI) or computed tomography (CT). There are also other techniques for conductiv-
ity distribution acquisition. Additionally, some standard models of such distribution are often employed.
Regardless of the approach, in the current work we assume the distribution σ(x) to be known at every
point x ∈ Ω.

3 The Cauchy problem for sourceless domain
Areas outside thebrain volumeconsist of skin, skull bones, cerebrospinal fluid (CSF).Weassume theobjective
signal be produced only by inner or surface brain currents. Thus, in our consideration we can expect that the
tissues outside the brain do not contain any sources, an assumptionwhich is important for further reasoning.

In sourceless homogeneous volume, equation (2.1) takes the form

∆U = 0, x ∈ Ω1 (3.1)

Indeed, the equation above can be obtained from (2.1) by nulling the right-hand side due to absence of
sources with the assumption that the conductivity σ1 = const.

3.1 Statement of the problem

Equation (3.1) together with boundary conditions (2.2) and (2.3) enables us to state an auxiliary problem,
which we name the extrapolation problem.
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Extrapolation problem for the electric potential. Assume the function u(x), x ∈ Γ, to be known. Find the func-
tion U(x) such that

∆U = 0, x ∈ Ω1, (3.2)
U|Γ = u(x), x ∈ Γ, (3.3)

n ⋅ ∇U|Γ = g(x), x ∈ Γ. (3.4)

Remark 3.1. In biophysical applications, the interface between the brain and cerebrospinal fluid contains
sources. Moreover, the mentioned interface is the only area, where the electric currents producing the objec-
tive signal are possible. Due to this fact, from the mathematics’ point of view, the Cauchy problem for the
Laplace’s equation can be stated in this case only for open domain, which does not contain the brain surface
itself. Despite this, our numerical experiments showed that its solution (i.e., backpropagation of the poten-
tial to the brain surface) is accurate enough and can be used in practice. This is caused by the fact we do
not compute the potential only on boundary, but compute it in the whole sourceless domain. Thus, we can
estimate the electric potential at the points arbitrary closed to the desirable surface. The respective numerical
experiments will be shown in Section 4.

Remark 3.2. If we consider multiple nested sourceless domains instead of only one, we can also write the
Dirichlet and Neumann boundary conditions for all of them:

Ui(x)|∂Ωi = ui(x),

n∇Ui(x)|∂Ωi =
σi−1
σi

n∇Ũi|∂Ωi ≡ gi(x),

where Ũi denotes the potential on the outer side of the interface ∂Ωi, i > 1. The boundary conditions are
obtained from requirements for potential and its normal derivative to be continuous inside the computational
domainΩ.Assuming the conductivity σ(x) = 0,x ∉ Ω,wecaneasily obtain the zeroNeumanncondition (2.2),
common for EEG problem.

The Cauchy problem for the Laplace’s equation is one of the classical examples of an ill-posed problem. Dur-
ing the last years, a number of validated approaches to its solution were presented. The approaches can be
divided into three main categories: approaches based on the optimization (Tikhonov’s regularization, etc.),
methods based on quasi-reversibility and iterative approaches (see, for example, [14]).

The first category includes classical Tikhonov’s regularization [4, 25], which is well-established and
mostly used. Conventional Tikhonov’s regularization, however, has some issues with the solution accuracy
(see, for example, [20]). Also, this category includes approaches based on the construction of a strictly con-
vex Tikhonov-like functional weighted with a domain-depending Carleman weight function [3, 20]. Despite
the great accuracy of the solution, themethod, however, is rather hard to implement and is better suitable for
nonlinear problems, for which it was designed. Other solutions based on optimization approaches are pre-
sented, for example, in [9]. The second category is probably the most known category of the approaches. It is
based on the quasi-reversibility method, which is being used in order to state a weak formulation of a prob-
lem, which, after discretization, is turned into solving a linear system of algebraic equations. Some methods
are presented, for example, in [5–8, 12].

3.2 The method

Equations (3.2)–(3.4) define the typical Cauchy problem for the Laplace’s equation. Uniqueness of this prob-
lem was proved, for example, in[24]. Solution of the problem was considered in a set of works (see, for
example, [3–5, 7, 8, 14, 25]).

In the current paper, we use the MQRmethod provided for linear finite-element approximations in [5, 6].
As one can see below, the method depends on two regularization parameters. The most efficient way of
choosing the regularization parameters is the balancing principle, which is described in [7].
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We introduce the following notations:

V0 = {h ∈ H1(Ω1) : h|Γ = 0},
V1 = {h ∈ H1(Ω1) : h|Π = 0},
Ṽ0 = {h ∈ H2(Ω1) : h|Γ = u(x)}.

(3.5)

Let 0 < ε ≪ 1 and 0 < δ ≪ 1 be two fixed small numbers (regularization parameters).

Weak formulation of MQR method. Find a pair of functions (U, λ) ∈ Ṽ0 × V1 such that

ε ∫
Ω1

∇U ⋅ ∇h dx + ∫
Ω1

∇h ⋅ ∇λ dx = 0 for all h ∈ V0, (3.6)

∫
Ω1

∇U ⋅ ∇μ dx − δ ∫
Ω1

∇λ ⋅ ∇μ dx = 0 for all μ ∈ V1. (3.7)

In [5] one can find proofs of existence and uniqueness of the solution, its stability and convergence of the
solution of (3.6)–(3.7) to the exact solution of problem (3.2)–(3.4) with (ε, δ) → 0 when the error in the
input data u(x) → 0.

Thefinite element approximation. Amongmanydifferentmethods available (finite-difference, finite-volume,
see, e.g., [22], finite element, etc.), we used the finite element method (FEM) with linear basis functions on
tetrahedrons as it combines simplicity and flexibility.

Let Xh be the space of P1 piecewise linear continuous finite-element basis functions with the basis hi(x),
i = 1, . . . , N (here N is the number of nodes). Denote by NΓ the number of nodes belonging to Γ. For con-
venience, we also introduce the notation i(D) = {i : xi ∈ D} to be indices of nodes of a finite element mesh,
which belong to some domain D ⊂ ℝ3.

Introduce the following subspaces, which are the finite-dimensional analogs of the corresponding sub-
spaces (3.5):

X0 = {h ∈ Xh : h|Γ = 0},
X1 = {h ∈ Xh : h|Π = 0},
X̃0 = {h ∈ Xh : h − U0 ∈ X0}.

Here U0 is the approximation of the function with the following properties:

U0|Γ = u(x),
∂nU0|Γ = 0,

U0 ∈ H1(∆, Ω),

where
H1(∆, Ω) = {U ∈ H1(Ω) : ∆U ∈ L2(Ω)}.

The formulation of the MQR method is still the same as (3.6)–(3.7) with the difference that the pair of
functions to be found now belongs to (U, λ) ∈ X̃0 × X1. Finite-dimensional approximations of U and λ can be
written as follows:

U(x) ≈
N
∑
i=0

Uihi(x), x ∈ Ω1, (3.8)

λ(x) ≈
N
∑
i=0

λihi(x), x ∈ Ω1. (3.9)

For convenience, introduce the following notation:

Aim = ∫
Ω

∇hi(x) ⋅ ∇hm(x)dx, i,m = 1, . . . , N.
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Substituting (3.8)–(3.9) into (3.6)–(3.7) with h = hj ∈ X0, μ = hk ∈ X1, we obtain

ε ∑
i(Ω1)

UiAim + ∑
j(Ω1)

λjAjm = 0, m = m(Ω1 \ Γ), (3.10)

∑
l(Ω1)

UlAlk − δ ∑
n(Ω1)

λnAnk = 0, k = k(Ω1 \ Π). (3.11)

Since U(x) ∈ ̃X0, we can state that Ui = ui , i ∈ i(Γ), and the first term of (3.10) takes the form

ε ∑
i(Ω1)

UiAim = ε ∑
i(Ω1\Γ)

UiAim + ε∑
i(Γ)

uiAim , m ∈ m(Ω1 \ Γ).

Since the function λ(x) ∈ X1, the second term can be written as follows:

∑
j(Ω1)

λjAjm = ∑
j(Ω1\Π)

λjAjm .

Reasoning in the same way, we obtain for both equations (3.10) and (3.11) that one can rewrite these equa-
tions as follows:

ε ∑
i(Ω1\Γ)

UiAim + ∑
j(Ω1\Π)

λjAjm = am , m = m(Ω1 \ Γ), (3.12)

∑
l(Ω1\Γ)

UlAlk − δ ∑
n(Ω1\Π)

λnAnk = bk , k =k(Ω1 \ Π), (3.13)

where

am = −ε∑
i(Γ)

uiAim , m ∈ m(Ω1 \ Γ), (3.14)

bk = − ∑
i(Γ)

uiAik , k ∈ k(Ω1 \ Π). (3.15)

Denote the number of nodes located in some domain D as ND. It is easy to see that in the representation above
the discrete system contains 2NΩ − N∂Ω equations and the same number of variables. It is thus can be solved
by an iterative solver. Thus, the final system can be written in the form

(
A11 A12

A21 A22)(
U
λ
) = (

a
b
) ,

where notations Art, r, t = 1, 2, represent parts of the matrix A, defined with the changing of i, j,m, l, k, n in
(3.10)–(3.11), and a, b are vectors defined by (3.14)–(3.15).

3.3 Estimation of the depth of the source under the surface

In this subsection, we present the main idea of the source localization using the Cauchy solution for the
Laplace equation. We consider a source inside a homogeneous volume bounded by the scalp and cortical
surfaces. Despite the fact that this approximation does provide accurate values of potential, we show that
under an appropriate set of assumptions, common for electroencephalography, our results apply to EEG.

Homogeneous volume. In the current paragraphwe assume the head volume to be homogeneous. As before,
we denote by Ω the domain representing the head volume, and represent it with a set of Nd nested subvol-
umes Ωk such that ⋃Nd

k=1 Ωk = Ω, and Ωk ∩ Ωk+1 = ∂Ωk+1 for all k = 1, . . . , Nd − 1. Assume the head volume
outside the brain to be homogeneous. Thus, the choice of subdomains Ωk does not depend on the “real” lay-
ers (representing different tissues) of the head, which fact allows us to build these domains such that the its
boundaries be as close to each other as it is possible in order to get the accuracy gain. The measurable part
of the boundary is Γ ⊂ ∂Ω.
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Consider now a set of volumes Θi = ⋃ik=1 Ωk. Thus, Θi−1 ⊂ Θi for all i ≤ Nd. For simplicity, we also intro-
duce the notation f = ∇ ⋅ J, f ∈ L2(Ω) for the right-hand side of equation (2.1) and assume that there exists an
s > 1 such that supp(f) ∩ Θi = ⌀ for all i < s (i.e., we assume the first s − 1 domains Θi to be sourceless). The
potential U in the domain Ω satisfies equation (2.1) with the boundary condition (2.2), but for generality we
denote by U some function, which satisfies only equation (2.1). Let u(x) = U|Γ, and q(x) = (∂nU)|Γ.

Now consider a set of functions Ui, i = 1, . . . , Nd, satisfying the following set of Cauchy problems:

∆Ui(x) = 0, x ∈ Θi , (3.16)
Ui(x)|Γ = u(x), (∂nUi(x))|Γ = q(x). (3.17)

We assume that the solutions of problems (3.16)–(3.17) exist for all i ≤ Nd. Note that uniqueness of the
solution of the last problem is proven (see [5]). We formulate the following proposition.

Proposition 3.1. With the above assumptions, the functions Ui(x) and U(x) coincide in the domain Θi, i.e.,

‖U − Ui‖L2(Θi) = 0 for all i < s.

Proof. Consider the function v = U − Ui. This function satisfies the problem

∆vi(x) = f(x), x ∈ Θi , vi(x)|Γ = 0, (∂nvi(x))|Γ = 0.

Referring to the assumption supp(f) ∩ Θi = ⌀ for all i < s, we rewrite the last problem

∆vi(x) = 0, x ∈ Θi , vi(x)|Γ = 0, (∂nvi(x))|Γ = 0.

Due to [5, Lemma 1], the solution vi ≡ 0, i < s, is unique, which proves the current proposition.

It is important to note that due to Proposition 3.1 we can consequently conclude that ‖Ui−1 − Ui‖L2(Θi−1) = 0
for all i < s. Thus, while there is no source in the computational domain, the solution of the Cauchy problem
on the certain iteration coincides with the one on the previous iteration.

It is reasonable to expect that ‖Us−1 − Us‖L2(Θs−1) > 0, i.e., the solution starts differ from the solution
on the previous iteration, when the computational domain starts to contain the source. Unfortunately, it
is impossible to prove this in general case, without imposition of the additional assumptions on the func-
tion f . Our numerical experiments presented in Section 4 always show, however, expectable jump of the
norm ‖Us−1 − Us‖L2(Θs−1) > 0, which allows us to formulate the following algorithm.

Algorithm 1. Algorithm for estimation of the depth of the source under the surface.
Define a tetrahedral mesh and subdomains Θi , i = 1, . . . , Nd.
Solve the Cauchy problem (3.16)–(3.17) for i = 1 in order to obtain the function U1.
for i = 2, . . . , Nd do

Calculate Ui solving the Cauchy problem (3.16)–(3.16).
Calculate the number ei = ‖Ui−1 − Ui‖L2(Θi−1).

end
Find the index i in which ei − ei−1 > l, where l > 0 is some number, chosen, for example, as a mean value
over ei.
The index i ≡ s due to the consideration above.

Indeed, solving the Cauchy problem for each of subdomains Θi, and calculating the norms

ei = ‖Ui−1 − Ui‖L2(Θi−1),
we expect to observe the jump of ei value at the number i = s. The described algorithm will be shown below,
in Section 4.

Remark 3.3. One can see that all the facts we discuss in the above paragraph can be proven only when the
corresponding equations have a solution; we, however, note that existence of the solution of the Cauchy
problems (3.16)–(3.17) guaranteed physically for i < s due to the Proposition 3.1. Indeed, the solution
Ui coincides in the calculation domain Θi with the solution of the Poisson’s equation (2.1) with zero
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Neumann boundary condition, which is always solvable in the assumption f ∈ L2(Ω). We cannot guarantee
the existence of the solutions Us(x). Predictable, our numerical experiments show in the last case the same
jump of the consequence ei. In order to be more accurate, we can also use the considered criterion together
with the one based on the dependence of the generalized residual of system (3.10)–(3.11), which criterion
will be shown in further consideration.

Other criteria. In order to justify the idea, we propose to use the algorithm together with some other heuristic
criteria. It is impossible to prove the criteria below strictly mathematically, but these criteria are still being
rather physical, and, we believe, enough trusted.

First of all, we consider also the overall residual ri of system (3.12)–(3.13) after the solution of the Cauchy
problem (3.16)–(3.17). It is proven in [5] that theMQRmethod converges to the unique solution Ui if it exists.
Thus, the generalized residual should be comparatively close to zero. Since the solutionsUi exist for any i < s,
we expect to see the jump of ri for i = s.

We also refer to the fact that MQR method, described above in the article, aims to find two distributions:
U(x), corresponding to the potential, and λ(x), which represents the Laplacian ∆U(x). For electric potential
mapping, we used only the first parameter, but now we propose to consider also the second one. Consider
the sequence λi(x) ≡ ∆Ui(x). Thus, we also can expect the jump in the norm di = ‖λi‖L2(Ωi) for i = s.

Also, one more criteria can be considered. Obviously, the absolute value of the electric potential reaches
its maximum on the boundary of the domain Θi, which is located on the closest distance from the source.
Denote the described value by mi = max(Ui|Θi ). Our numerical experiments show us the maximum value of
the latter consequence always located in the domain Θs−1.

All considered criteria will be shown below, in Section 4.

Heterogeneousmedia. Inmost real-life applications (including the case of encephalography, which is under
the consideration in the current paper), we need to find the source not in an idealized homogeneous volume.
Talking about the encephalography, the sourceless subdomains of the head consist of different kinds of tis-
sues, being characterized with different conductivities; moreover, the conductivity may vary in dependence
on a big number of factors. However, our numerical experiments show that the considered criteria may be
applied for an inhomogeneous volume. This becomes possible becausewe consider in this case only behavior
of the difference between potentials, reconstructed in different calculation areas instead of the precise poten-
tial distribution in these areas. Regarding the above consideration,wewereusingonly ahomogeneousmedia,
without any information of real distribution of conductivity. Thus, applying the formulated “homogeneous”
algorithm to inhomogeneous volume Ω, we still will have the same behavior of the ei sequence, but the
Cauchy conditions should be different for homogeneous and heterogeneous cases. Our numerical experi-
ments show, however, high accuracy of the estimation of the depth even inheterogeneous volume.Weexplain
the observed results with the fact that in case of encephalography all sourceless volumes are dielectrics with
very low conductivities; despite the fact conductivities of different tissues are not equal to each other, they are
rather close. Moreover, thickness of the sourceless layers is relatively small under the area of measurements,
located at the top of a head. Thus, we do not expect big change in the Cauchy conditions due to heterogeneity
of the object. Our numerical experiments show that the relative difference in Cauchy data between these two
cases is about 1% to 4%. The numerical experience on stability of the algorithm, shown in Section 4, allows
to expect the comparable additional error in the reconstructed potential, and in estimated depth of the source
consequently.

4 Numerical results
The current section is aimed to present the numerical results of the algorithm described above. We start with
two cases of the simple model representing the brain with the inner sphere, and outer tissues with the outer
spherical layer. Then we present the numerical results for a more realistic model of the head, based on sim-
plified MRI data [15]. In the current paper, we use simulated data. The simulations were implemented with
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the finite element numerical solution of equation (2.1) for the sources/conductivity distributions presented
below. The SLAE (3.10)–(3.11) has been solved using the generalized minimal residual (GMRES) method
converging to the residual 10−6. All calculations in the current section have been provided using a laptop
equipped with 16Gb RAM and CPU Intel Core-i7 7820HQ.

4.1 Spherical model with the sources located under the surface of the active domain

The case considered in this subsection is unrealistic since the currents here are located under the surface
of the “active” domain. In truth, the biochemical sources are placed on the interface between a brain and
cerebrospinal fluid, i.e., on the brain surface. In this case, in the strict sense, the Cauchy problem for the
Laplace’s equation cannot be stated. Thus, we find it reasonable to start the presentation of our numerical
results in the strict case when the sourceless domain is closed, i.e., its boundaries are also sourceless.

The head here is represented with a simple model, which consists of the spherical “active” domain Ω2
with the radius r2 = 0.8 and a spherical layer representing the outer sourceless area Ω1with the radius r1 = 1.
The conductivity of the inner domain is σ(Ω2) = σ2 = 2.2 S/m, and the domain Ω1 can be characterized with
the conductivity σ(Ω1) = σ1 = 0.1 S/m. The electric sources are depicted with the support (three spots) on
Figure 2 (a). The support spots contain the constant currents inside it: J(x) = (0, 10−7A, 0), x ∈ supp(J).

The finite element mesh for the sourceless domain Ω1 consists of 484, 946 tetrahedra and 90,435
vertices. The calculation time for the Cauchy problem solver implemented with the Matlab is equal to 5.7
seconds.

Figure 2 (a) and (b) depict the simulated electric potential on the outer surface and the surface of the
“active” domain, respectively, while (c) and (d) show respectively the simulated potential on the “brain”
surface, and the result of its reconstruction using the algorithm presented above.

(a) (b)

(c) (d)

Figure 2: Spherical model (sources located under the surface of the active domain): (a) simulation of the electric potential on the
outer surface (scalp); (b) simulation of the electric potential on the “active” domain surface; (c) simulation of the potential on
the surface of the inner sphere; (d) the potential on the inner sphere surface mapped from the data depicted in (b) via the
solution of the Cauchy problem (ε = 0.0001 and δ = 0.001).
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(a) (b)

(c) (d)

Figure 3: Spherical model (sources located on the surface of the inner sphere): (a) The current density (sources); (b) simulation
of the electric potential on the outer surface (scalp); (c) simulation of the electric potential on the “active” domain surface;
(d) the potential on the inner sphere surface, obtain via solution of the Cauchy problem with regularization parameters
ε = 0.00001 and δ = 0.001.

4.2 Spherical model: More realistic case

Geometrically, themodel under consideration in the current subsection is identical to the one in the previous
subsection. It is also characterized by the same conductivity distribution. The difference is in the current. First
of all, the currents here are located on the interface between active and inactive domains, which is closer to
the real-life encephalographic situation. Strictly speaking, the domain Ω1, in this case, should not contain its
∂Ω2 boundary surface, and it should be the opened domain. However, since the potential can be calculated
via the solution of the Cauchy problem for the surface, which is arbitrary close to the surface ∂Ω2, we were
not surprised that themodelled and restored via the Cauchy problem solution potentials on an active domain
surface are relatively close to each other. The following results can be seen in Figure 3.

The finite element mesh for the sourceless domain Ω1 consists of 484,946 tetrahedra and 90,435 ver-
tices. The calculation time for the Cauchy problem solver implemented with the Matlab is equal to 5.7
seconds.

4.3 Simplified head model based on real MRI data

The model described in this subsection is a simplified but more realistic model of the head. The mesh was
constructed using the iso2mesh software [15]. Here the “realistic” distribution of the current density over the
brain surface was used.

In order tomake the resultmore realistic,we employed twokindsof current density distributions. Figure4
depicts the model with several “active” spots (support areas) of the cortex, where the current, corresponding
to the spot is constant inside it. Figure 5 shows the situation when the current is randomly defined at each
point inside the support areas (areas itself are similar to the previous case).
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(a) (b)

(c) (d)

Figure 4:MRI-based model of the head: case with piecewise-constant current distribution on the brain surface. (a) the current,
(b) FEM-simulated potential on the outer surface of the head (input data for the Cauchy problem, (c) FEM-simulated potential;
(d) reconstruction of the potential on the brain surface on the base of the data depicted by (b).

(a) (b)

(c) (d)

Figure 5:MRI-based model of the head: case with random current, distributed within big areas of the brain surface. (a) the
current, (b) FEM-simulated potential on the outer surface of the head (input data for the Cauchy problem, (c) FEM-simulated
potential; (d) reconstruction of the potential on the brain surface on the base of the data depicted by (b).
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The finite element mesh for the sourceless domain Ω1 consists of 444,916 tetrahedra and 82,239 ver-
tices. The calculation time for the Cauchyproblem solver implementedwithMatlab varies in the interval 6–11
seconds in dependence of the current distribution used for modelling.

4.4 Discussion of the numerical results

Current paragraph is devoted to discussion of obtained numerical results including error analysis, stability
and choice of the tetrahedralmesh density. Also,wewill stress here one interesting factorwe observed,which
makes possible the idea of electric source localization on the base of measured potential only. All the bench-
marks in the current paragraph were applied to spherical models due to simplicity of building of suitable
meshes, simplicity of implementation of the benchmarks, and comparatively small calculation times.

In ourbenchmark for error analysis,weused the sphericalmodel, described inSection4.1.AddingGauss-
ian noise with varying amplitude, we calculated the error ECauchy (4.1) in the Cauchy solution and the error
Einput in the input data (4.2):

ECauchy =
‖U|∂ΩNd

− U∗|∂ΩNd
‖L2

‖U∗|∂ΩNd
‖L2

, (4.1)

Einput =
‖U∆|Γ − U∗|Γ‖L2
‖U∗|Γ‖L2

, (4.2)

where U∆|Γ represents the noisy measured potential, U∗ represents the ground-true solution (i.e., result of
direct modelling of a potential in the entire volume Ω), and U|∂ΩNd

represents the potential, restored with
the Cauchy problem solution. Here Nd=2. The dependence of these errors on each other is presented in Fig-
ure 6 (a). It is also interesting to analyze the error ECauchy on the number of the elements in tetrahedral FEM
mesh used in calculations. The latter dependence is shown in Figure 6 (b). Regarding Figure 6 (a) one can
make a conclusion about stability of the algorithm (i.e., respective error of the solution depends regularly on
the input data respective error). Figure 6 (b) is very common for inverse and ill-posed problems and shows
the existence of the optimal number of elements (i.e., the mesh density).

(a) (b)

Figure 6: Error in the Cauchy solution in dependence of the error in input Cauchy data (a) and in dependence of the number of
tetrahedra Ne in the FEM mesh (b).

Estimation of the depth of the source locations. The current paragraph aims to present the numerical results
on Algorithm 1 together with other heuristic criteria (see Section 3.3). In order to do this, we constructed
a simple model consisting of eight concentric spheres. Radii of the spheres and conductivities of the layers
between them (chosen closed to real head conductivities) are presented in Table 1. The electric sources were
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Radii, mm 100 97 94 91 88 85 70 68

σhet, S/m 0.05 0.1 0.2 0.05 0.1 2.2 2.2 2.2
σhom, S/m 0.1 0.1 0.1 0.1 0.1 2.2 2.2 2.2

Table 1: Parameters of heterogeneous (σhet) and homogeneous (σhom) models.

(a) (b)

(c) (d)

Figure 7: Dependencies on the depth of: (a) ei , (b) relative residual ri; (c) norm of Laplacian of the numerical solution di, and (d)
maximum absolute values of the potential mi.

located inside the layer between 6 and 7 sphere, on the depth 15.6mmunder the surface of the outer sphere.
In order to make the experiment more vivid, we used two kinds of simulated data: the electric potential,
simulated with the parameters listed above, and the electric potential simulated for the same geometry but
with averaged conductivity of five outer (sourceless) layers equal to 0.1 S/m. All results, obtained with the
first simulation (heterogeneous) are presented below, on Figure 7 with dashed red lines, while the numerical
research for the second simulation (homogeneous) are presented with solid blue lines.

Figure 7 (a) depicts the usage of themain criteriondescribed in Section3.3. The exact depth of the electric
source is equal to 15.6 mm and is presented with the red circle on the depth axis. Other heuristic criteria,
based on generalized residual ri, norms of ∆Ui, di, and the maximum of the absolute values of the potential
mi are shown in Figures 7 (b), (c), and (d), respectively. As one can see from the curves, although the values
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for “homogeneous” and “heterogeneous” case differ, the behavior of all curves can be characterized by the
jump of respective curves near the source.

5 Conclusion
In this paper, we presented an approach for scalp-to-cortex data mapping, based on the finite-element dis-
cretization. The method is based on solving the Cauchy problem for the Laplace’s equation in homogeneous
compartment and can be described as propagation of EEG from the scalp to the brain surface. Our numerical
implementation employs the first-order finite-element approximation on tetrahedral grids, which can handle
anatomical headmodels. The method can be considered as a pre-processing procedure, after which classical
inverse source localization problem solvers can be applied. We believe the solution of the Cauchy problem
described in this paper can be easily adapted to source localization in magnetoencephalography.
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tion [21].
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