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Electroencephalographic source reconstruction
by the finite-element approximation of the elliptic

Cauchy problem
Mikhail Malovichko, Nikolay Koshev, Nikolay Yavich, Alexandra Razorenova, and Maxim Fedorov

Abstract— Objective: This paper develops a novel ap-
proach for fast and reliable reconstruction of EEG sources
in MRI-based head models. Methods: The inverse EEG
problem is reduced to the Cauchy problem for an elliptic
partial-derivative equation. The problem is transformed into
a regularized minimax problem, which is directly approx-
imated in a finite-element space. The resulting numerical
method is efficient and easy to program. It eliminates the
need to solve forward problems, which can be a tedious
task. The method applies to complex anatomical head mod-
els, possibly containing holes in surfaces, anisotropic con-
ductivity, and conductivity variations inside each tissue.
The method has been verified on a spherical shell model
and an MRI-based head. Results: Numerical experiments
indicate high accuracy of localization of brain activations
(both cortical potential and current) and rapid execution
time. Conclusion: This study demonstrates that the pro-
posed approach is feasible for EEG source analysis and can
serve as a rapid and reliable tool for EEG source analysis.
Significance: The significance of this study is that it devel-
ops a fast, accurate, and simple numerical method of EEG
source analysis, applicable to almost arbitrary complex
head models.

Index Terms— Electroencephalography, source recon-
struction, Cauchy problem, finite-element method.

I. INTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG) source local-
ization with a head model based on individual MRI or

CT scans has been an active area of research for preceding
decades. A vast number of numerical methods have been
proposed to date. The most universally recognized methods
are those based on solving an inverse problem for underlying
Poisson’s equation.

The current-reconstruction algorithms seek to estimate the
right-hand side of Poisson’s equation (we refer to reviews
[1]–[7], to mention a few). They are implemented in many

The first and third authors were partially supported by the Russian
Science Foundation, project No. 18-71-10071.

M. Malovichko and N. Yavich are with Center for Data-Intensive Sci-
ence and Engineering (CDISE), Skolkovo Institute of Science and Tech-
nology, Moscow, Russia and also with Department of Computational
Physics, Moscow Institute of Physics and Technology, Dolgoprudny,
Russia, e-mail: m.malovichko@skoltech.ru

N. Koshev, A. Razorenova, and M. Fedorov are with CDISE, Skolkovo
Institute of Science and Technology

Copyright (c) 2020 IEEE. Personal use of this material is per-
mitted. However, permission to use this material for any other pur-
poses must be obtained from the IEEE by sending an email to pubs-
permissions@ieee.org

free and commercial software packages, such as MNE suite,
BrainStorm, FieldTrip, Curry, and some others. The algorithms
in this group can be related to the Tikhonov minimization
and include MNE family [8], [9], LORETA family [10], [11],
LAURA [12], FOCUSS [13] among many other algorithms
and their modifications. In the cortically-constrained current
reconstruction, it is assumed that the source current is non-zero
only on the cortex (also, the current is frequently considered
normal to the cortex). It leads to a more stable solution [14],
and many impressive examples of EEG source localization
have been obtained by this approach [9], [15]. It can be
demonstrated (see Section 2) that this problem is equivalent
to the Cauchy problem for Poisson’s equation.

The major drawback of all current-reconstruction methods
is they require multiple solutions of the forward problem,
which are typically arranged in the lead-field matrix. Accurate
solution of the forward problem is a non-trivial task by itself,
which also tends to become time-demanding on complex
models.

Those implementations based on the boundary-element
method (BEM) might not have enough geometric flexibility
[16]. Typically, the head is represented with just a few com-
partments (e.g. scalp-skull-brain), which are closed (no holes).
The conductivity is assumed isotropic and constant inside each
compartment. The cortical surface is simplified significantly.
Furthermore, the BEM results in a system of linear equations
with a dense matrix, so the numerical complexity grows as
O(n3) with problem size. Also, when the surfaces get close
to each other, the system matrix becomes nearly singular. The
numerical tests presented in [17] indicated that BEM might be
slower than FEM in the case of fine-scale head models.

Implementations based on the finite-element method (FEM)
can handle complex geometries and varying anisotropic con-
ductivity. Various FE discretizations on tetrahedral/hexahedral
grids have been applied to EEG simulation, such as classical
H1-conforming elements, mixed finite elements, discontinu-
ous Galerkin, and others. Although many FE packages are
available, an accurate numerical implementation of a FEM
forward solver is still an elaborate task on its own, as indi-
cated in the large number of articles [17]–[24] (among many
others). A notoriously subtle point is the approximation of an
H−5/2 right-hand size (the dipole) in finite-element spaces.
From a computational standpoint, it may become quite time-
demanding on large grids (see [25]), since the number of the
forward simulations needed to form the lead-field matrix is
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equal to the number of electrodes minus one (we assume that
the reciprocity principle is employed).

The potential propagation methods seek to propagate elec-
tric potential from the scalp inside the head through the
sourceless domain. Such methods date back to at least the
1970s [26], [27]. Although these methods differ from each
other in terms of implementation and application, it can be
demonstrated that they solve the Cauchy problem for Laplace’s
equation. The majority of them are approximate in that they
make various assumptions to link potential and its normal
derivative on the scalp to that inside the head. For example,
the skull resistivity is assumed negligible comparing to that of
the scalp, or the head is approximated by a set of spheres (see
[28]–[32]). These methods can be a part of more sophisticated
algorithms [33].

Purely numerical potential-propagation algorithms exist. A
BEM-based potential projection procedure was proposed in
[34], [35]. In this approach, the forward problem is discretized
by boundary elements and the cortical potential is computed as
a pseudosolution of a system of linear equation with a dense
rectangular matrix. More recently, an approach based on the
mixed BEM formulation was proposed in [36]. It reconstructs
both the normal current and the potential on the cortex. These
approaches are appealing but still have some limitations rooted
in the BE discretization, such as the inability to handle surfaces
with holes and variations in conductivity inside compartments.
Also, they require manipulation of large dense matrices, which
can become time-demanding on fine grids.

Special mention should be made of the deblurring procedure
by Gevins [37]. It maps the scalp potential to the cortex,
making use of the FE discretization on tetrahedral grids (most
likely, the standard H1-conforming linear elements). This
approach requires inverting a large submatrix of the stiffness
matrix, which can be challenging. Technical details about this
technology are scarce [38], [39].

In a broader mathematical context, there is extensive math-
ematical literature on the Cauchy problem for elliptic partial
derivative equations. In relation to the inverse EEG problem,
the mixed quasi-reversibility method of Bourgeois [40], [41]
is of special interest. Originally developed for Laplace’s equa-
tion, this method provides flexibility of the FEM and avoids
the use of Green’s operator(see Section 2). In [42], we apply
this approach to the reconstruction of the cortical electric
potential. Although this approach appeared prospective, it con-
tains restrictive assumptions, such as the constant conductivity
of the head, and the requirement to have measured data in
many (tens of thousands) vertices of the grid.

This paper presents a method for reconstructing both po-
tential and the current on the cortical surface given EEG
measurements on the scalp. The approach is based on reducing
the problem to an inverse boundary-value problem and appli-
cation of the mixed quasi-reversibility method along with a
finite-element (FE) discretization. In this paper, we removed
a restrictive assumption of the constant conductivity in the
head. It significantly improves the accuracy of the potential
reconstruction and also allows to correctly approximate the
electric current. We provided a constructive derivation of the
mixed quasi-reversibility problem. We assess the accuracy of
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Fig. 1. Schematic representation of geometry. ΓD ⊂ ΓN ⊂ ∂Ω.
Surface ΓB may consist of a set of closed surfaces, e.g. the cortex can
be represented by two disjoint surfaces.

reconstruction on spherical and anatomical head models and
provide some performance estimations. The interpolation from
a small number of electrodes to a much bigger number of grid
vertices is also addressed.

The paper is organized as follows. In Section 2 we derive
the continuous inverse problem. Section 3 is dedicated to
its discretization and numerical implementation. Numerical
experiments are presented in Section 4. Discussion and con-
cluding remarks are given in Sections 5 and 6, respectively.

II. PROBLEM FORMULATION

The electric potential inside the human head driven by the
source current satisfies to Poisson’s equation [16],

div(σ∇u) = divJ, in Ω0,

∂u

∂ν

∣∣∣∣
ΓN

= 0.
(1)

Here Ω0 ⊂ R3 is the head volume enclosed by surface ΓN ,
u is the scalar electric potential, J is the source current (a
vector field), σ is the electric conductivity, vector ν is a unit
outward normal. Let the head be composed out of subdomains
having sufficiently smooth boundaries. This assumption is
general enough for quite complicated geometries, for example,
a skull with openings and disjoint bones. We also assume
that conductivity σ is a positive real-valued piecewise-analytic
function uniformly bounded away from zero. The following
interface conditions hold,

ui = uj , σi∇ui · ν = σj∇uj · ν, on Γij , (2)

where indices i and j refer to any two neighboring subdomains
with interface Γij. Problem (1) is well-posed (unique and
stable) if the compatibility condition is satisfied. Let gD be
the potential measured on a part of the skin ΓD ⊂ ΓN . We
want to reconstruct J assuming that it is non-zero only on the
cortical surface, ΓB . Here we presume that J is normal to ΓB ,
though this condition will be removed later on.

We start our exposition with the classical current-
reconstruction approach, which can be related to the Tikhonov
minimization procedure,

inf
J,ε

||gD − G(J)||2X + ε||J ||2Y , (3)
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where X and Y are appropriate function spaces, ε > 0 is
the regularization parameter, G is Green’s operator, which
computes u|ΓD

for given σ,J , and zero Neumann boundary
conditions. If X and Y are Hilbert spaces, then (3) reduces
to a linear problem for every ε. For example, if X and Y are
L2, then (3) after discretization reduces to the following linear
problem for each ε,

(GTG+ εI)j = GT d, (4)

where G is a discrete versions of operator G (the lead-field
matrix), I is the identity matrix, j and d are discretized
version of J and gD, respectively. Many variants of this basic
formulation have been described in the literature. In particular,
X and Y can be merely Banach, the residual can be measured
in a norm which accounts for the noise statistical properties, j
can be subject to various priors. Similar formulations can be
derived for reconstruction of the cortical potential [35], [37],
and even both the potential and current [36]. In all the cases,
the lead-field matrix G is the main ingredient. It is composed
of the forward solutions for all candidate dipoles, so a forward
solver, such as FEM, is necessary. The number of forward
simulations required to compose the lead-field matrix for the
cortically constrained case is equal to the number of electrodes
minus one. In certain scenarios, the construction of the lead-
field matrix implies a high computational cost. On the other
hand, as soon as the lead-field matrix is constructed the rest
of computations is fast.

Here we describe our approach. Let Ω ⊂ Ω0 be a volume
enclosed by the skin surface, ΓN , and the cortical surface,
ΓB , such that ∂Ω = ΓN ∪ ΓB (Figure 1). The normal current
on a boundary can be interpreted as a dipole layer with some
surface density, S(ΓB). That is, we have the following forward
problem,

div(σ∇u) = 0, in Ω,

∂u

∂ν

∣∣∣∣
ΓN

= 0, σ
∂u

∂ν

∣∣∣∣
ΓB

= S.
(5)

Problem (5) is understood in the weak sense, so conditions
(2) are included in (5) by specifying the function spaces as
u ∈ H1(Ω), σ∇u ∈ Hdiv(Ω). We can specify formally
S ∈ H−1/2(ΓB), although much more smooth solutions
appear in practice. The domain inside ΓB does not impact
the solution: the interior and exterior Neumann problems
are uniquely determined by the double layer on the shared
boundary (for example [43]). We can formulate an inverse
problem, associated with (5), as follows.

Find S(ΓB) provided
div(σ∇u) = 0 in Ω,

∂u

∂ν

∣∣∣∣
ΓN

= 0, u|ΓD
= gD.

(6)

Similarly, the interior and exterior Dirichlet problems are
uniquely determined by the single layer potential on ΓB . It
motivates us to consider an inverse problem with respect to
the potential, u, and then compute S = σ∂u/∂ν. The problem

reads,
Find u in Ω provided

div(σ∇u) = 0 in Ω,

∂u

∂ν

∣∣∣∣
ΓN

= 0, u|ΓD
= gD.

(7)

Given u, both u|ΓB
and S are computed by post-processing

u. Note that, in (7), we do not assume that J is normal to ΓB .
A note should be made on uniqueness of problem (7), which

is the Cauchy problem for a linear elliptic PDE. Generally,
the uniqueness of the Cauchy problem for elliptic PDEs
with sufficiently smooth boundaries holds up to Lipschitz-
continuous coefficients inclusively (see discussion in [44]). It
is clearly not the case. However, the uniqueness of the Cauchy
problem still holds for EEG, because the head consists out
of several closed domains. The analytic continuation in each
domain is unique due to Holmgren’s theorem.

We apply the mixed quasi-reversibility method proposed in
[40] to (7). The original method is formulated for the case σ =
1 and ΓD = ΓN , so we modified it. We propose a constructive
derivation, applying the technique from [45].

Let u ∈ H1(Ω), gD ∈ H1/2(ΓD) (the Dirichlet data).
We apply the method of quasi-reversibility to problem (7),
demanding boundedness of u in H1(Ω) norm. Thus, we
consider the following minimization problem,

inf
u∈H1(Ω)

(
1

2

∫
Ω

|div(σ∇u)|2 +
ε

2

∫
Ω

(|∇u|2 + |u|2)

)
,

s.t. u|ΓD
= gD,

∂u

∂ν

∣∣∣∣
ΓN

= 0,

(8)

where ε > 0 is the regularization parameter. Here and below
we omit the dx under the integral sign because the measure
will be clear from the domain of integration. We observe that

1

2

∫
Ω

|div(σ∇u)|2 = sup
q∈H1(Ω)

(
−
∫

Ω

q div(σ∇u)− 1

2

∫
Ω

|q|2
)
.

(9)
Next, the divergence theorem is applied to

∫
Ω
q div(σ∇u).

This is justified by the fact that q ∈ H1(Ω), σ∇u ∈ Hdiv(Ω),
and also it can be verified directly for smooth functions by
applying the divergence theorem in each compartment and
noting that surface integrals on the internal interfaces cancel
out. We obtain the following minimax problem,

inf
u∈H1(Ω)

sup
q∈H1(Ω)

(∫
Ω

σ∇q · ∇u−
∫

ΓB

σq
∂u

∂ν
− 1

2

∫
Ω

|q|2

+
ε

2

∫
Ω

(|∇u|2 + |u|2)

)
, s.t. u|ΓD

= gD.

(10)
Let us specify the following function spaces,

Ṽ = {v ∈ H1(Ω) : v|ΓD
= gD},

V = {v ∈ H1(Ω) : v|ΓD
= 0}.

(11)

Then, problem (10) is equivalent to the following saddle-point
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problem.

Find (u, q) ∈ Ṽ ×H1(Ω) such that∫
Ω

σ∇q · ∇v −
∫

ΓB

σq
∂v

∂ν
+ ε

∫
Ω

(∇u · ∇v + uv)

= 0,∀v ∈ V,∫
Ω

σ∇u · ∇µ−
∫

ΓB

σ
∂u

∂ν
µ−

∫
Ω

qµ = 0,

∀µ ∈ H1(Ω).

(12)

Now we demand that q has zero trace on ΓB , thus belonging
to space

Q = {v ∈ H1(Ω) : v|ΓB
= 0}. (13)

Following [40] we stabilize (12) by demanding boundedness
of ||q||H1(Ω), that is, by adding term −δ

∫
Ω

(qµ+∇q · ∇µ)
to the second equation of (12). Since the norms ||q||L2(Ω) and
δ||q||L2(Ω) are obviously equivalent for δ > 0, we omit term
−
∫

Ω
qµ. Finally, we arrive to the following problem.

Find (u, q) ∈ Ṽ ×Q such that∫
Ω

σ∇q · ∇v + ε

∫
Ω

(∇u · ∇v + uv) = 0,∀v ∈ V,∫
Ω

σ∇u · ∇µ− δ
∫

Ω

(∇q · ∇µ+ qµ) = 0,∀µ ∈ Q,

(14)

where ε > 0 and δ > 0 are the two regularization parameters.
Note that, the trace of u on boundary is specified, so

∫
Ω
|∇u|2

is a norm, which is equivalent to ||·||H1(Ω). Similarly,
∫

Ω
|∇q|2

is a norm in Q equivalent to ||q||H1(Ω). So we might use in
(14) the stabilizing terms

∫
Ω
∇u·∇v and

∫
Ω
∇q ·∇µ, see [42].

In what follows, we solve (14) numerically by FEM.

III. FINITE-ELEMENT APPROXIMATION AND
IMPLEMENTATION

Domain Ω is divided into a set of tetrahedrons, Th, where h
stands for the maximal diameter of tetrahedrons. We utilized
the classical nodal-based linear basis functions P1. Let us
introduce the following function spaces,

Sh = {v ∈ C0(Ω) : v|T ∈ P1 ∀T ∈ Th},
Vh = {v ∈ Sh : v|ΓD

= 0},
Ṽh = {v ∈ Sh : v|ΓD

= gD},
Qh = {v ∈ Sh : v|ΓB

= 0}.

(15)

Problem (14) translates to the following discrete problem,

Find (uh, qh) ∈ Ṽh ×Qh such that ∀(vh, µh) ∈ Vh ×Qh

ε

∫
Ω

(uhvh +∇uh · ∇vh) +

∫
Ω

σ∇qh · ∇vh = 0,∫
Ω

σ∇uh · ∇µh − δ
∫

Ω

(qhµh +∇qh · ∇µh) = 0.

(16)
After assembling the system matrix and excluding essential
degrees of freedom (DOFs), problem (16) is transformed into
the following system of linear algebraic equations,[

A BT

B −C

] [
x
y

]
= f, (17)

where block B corresponds the mixed bilinear form; blocks A
and C correspond to the bilinear forms with ε and δ, respec-
tively; vectors x and y correspond to free DOFs of uh and qh,
respectively; non-zero entries of vector f are associated with
the essential DOFs. Note that, qh is an approximation of the
divergence of Ohmic current, div(σ∇u), and should be close
to zero. The system matrix in (17) is symmetric indefinite and
invertible as long as A and C are positive-definite, that is, for
ε > 0, δ > 0. The matrix is sparse with its size is twice that
of the number of vertices in the grid. We employ the sparse
LU factorization to solve (17). To compute the current from
uh, we compute its approximation in Ṽh following [46].

Our implementation is on C++ using MFEM library [47].
Computation of the element matrices is performed on the
reference element making use of the Piola transformation. We
employed UMFPACK sparse direct solver [48]. All computa-
tions reported in the present paper were serial.

IV. NUMERICAL EXPERIMENTS

A. Spherical shell

The first numerical experiment was conducted with a spher-
ical shell Ω enclosed by spheres Sa and Sb with the radii
a = 1 and b = 0.7, respectively. The conductivity was set to
σ = 1 S/m. The potential in the volume Ω was computed as
the solution to the following boundary-value problem,

−∆u = 0 in Ω,

u = gD on Sb,
∂u

∂ν
= 0, on Sa,

(18)

where gD is a predefined potential on the inner sphere. Here
the derivative operators understood in the classical sense.
Problem (18) was solved by expanding the solution into
spherical harmonics,

u(r, φ, θ) =

L∑
k=0

k∑
m=−k

(
Akmr

k +Bkmr
−k−1

)
Y m
k (φ, θ),

(19)
where Y m

k are the spherical harmonics, and expansion coeffi-
cients Akm and Bkm are determined from equations

Akmb
k +Bkmb

−k−1 =

∫
Sb

gDY
m
k ,

kAkma
k−1 − (k + 1)Bkma

−k−2 = 0.

(20)

We set L = 50. To compute the right hand side of (20) we
utilized quadratures and Matlab code by [49]. Accuracy of
the computed quadrature was selected to ensure it integrates∫
Sb
Y m
k with tolerance 10−7. Domain Ω was discretized

into 92,165 tetrahedrons (21,292 nodes) by Tetgen [50] via
iso2mesh package [51]. Potential on the inner and outer
surfaces are shown in Figure 2a,b.

Potential on the cortex, reconstructed with different values
of ε and δ, is presented in Figure 2c. We observe that in all
cases the algorithm reconstructed the pattern of the cortical
activity, though with varying deviation.
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(a)

(b)

ε=0.1

ε=0.01

ε=0.001

δ=0.1 δ=0.01 δ=0.001
(c)

Fig. 2. The source reconstruction in a spherical shell. Panel (a). The true potential on the outer surface. Panel (b). The true potential on the inner
surface. Panel (c). The potential on the inner sphere reconstructed from that on the outer sphere with different values of regularization parameters
ε and δ. The color scales in (b) and (c) are identical.

(a) (b) (c)

Fig. 3. Anatomical head used in the numerical experiment. Panel(a). The tetrahedral grid. Different tissues are shown in color. Panel(b). The
true cortical sources. Tetrahedrons containing current dipoles are marked in red. Panel(c). Simulated electric potential on a part of the scalp (the
Dirichlet data).

B. Anatomical head

In the second numerical experiment, we applied the algo-
rithm to synthetic EEG data simulated over an anatomical
head model. A participant’s 3D head model was built from
T1-weighted MRI volume obtained on a 1.5T Philips Intera
system with 1 mm3 resolution. Individual structural MRI
scans were processed in FreeSurfer 4.3 suite [52] using the
watershed segmentation algorithm. Surfaces of the skin, skull,
and the cortical gray matter were loaded to iso2mesh package,
processed and divided into a number of tetrahedrons. The
tetrahedralization itself was performed internally by a call to
TetGen mesh generator. The final grid, which consisted of
the skin, skull, cerebrospinal fluid (CSF), and brain, contained
587,882 tetrahedrons (Figure 3).

The forward problem was solved by FEM using the con-
forming P1 elements. During the simulation, we assigned the
following conductivities to the skin, skull, CSF, and brain to
0.33, 0.011, 1.0, and 0.33 S/m, respectively. The final grid
consisted of 587,882 tetrahedrons (Figure 3a). The source
dipoles were placed in 145 tetrahedrons adjacent to the two
cortical patches in the visual cortex. The dipoles were located
in barycenters of the tetrahedrons, oriented normally to the
cortical surface and had unity moments (Figure 3b). The
simulated distribution of potential on the scalp is shown in
Figure 3c.

A grid for the inverse problem was produced by remov-
ing tetrahedrons assigned to the innermost compartment (the
brain). Thus, the number of tetrahedrons was reduced to
354,669. The potential on a large part of the head surface
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(a) True potential (b) Potential reconstructed with ε = δ = 10−6

(c) Potential reconstructed with ε = δ = 10−5 (d) Potential reconstructed with ε = δ = 10−4

Fig. 4. Comparison of the true potential and the reconstructed one for different values of regularization parameters.

Fig. 5. Current reconstructed with ε = δ = 10−6 (green arrows).
Tetrahedrons containing the true current dipoles are marked in red.

were directly simulated by FEM (see Figure 3c) and then
used as input (Dirichlet) data for the reconstruction algorithm.
The potential reconstructed with different values of regular-
ization parameters is shown in Figure 4. For all values of the
regularization parameters, the most prominent feature is the
high-amplitude area of negative potential in the visual cortex,
which corresponds to the active patch. Its amplitude decrease
as regularization parameters increase, but all localizations
are consistent. In all cases, the reconstructed area is shifted
towards the scalp, because the data could not properly resolve
sources located in between the two hemispheres. The current
for ε = δ = 10−6 is given in Figure 5. We observe a good
localization of the active patches.

The fast solution of the system of linear equations is critical
for the overall performance of the algorithm. Table I lists the

performance of the direct sparse solver for different values
of the regularization parameters. The code was run on a
machine equipped with Intel Xeon CPU E5-2670 @ 2.6 GHz
with 64 Gb RAM. The code was compiled by Intel C++ 19
compiler with flag -O3, and linked to MKL BLAS 2019 and
SuiteSparse 5.6.0 libraries. All computations reported here
were serial. The reported timing can be further improved.

TABLE I
PERFORMANCE OF THE DIRECT SPARSE SOLVER

ε,δ Time,s Memory, Gb
1E-6 1715 3.5
1E-5 1389 3.1
1E-4 626 2.5

Firstly, after the sparse LU (or Choletsky, or LDLT ) factors
are computed, subsequent linear solves needed to process the
whole EEG time series are inexpensive, so the timing in
the table will be amortized. Secondly, the factorization itself
can be accelerated using either shared-memory CPU paral-
lelization or GPU units. Finally, application of preconditioned
iterative solvers, which is a topic of an ongoing research, may
dramatically accelerate computations.

In the following experiment, we evaluated the error due to
restricting input data to a small number of electrodes. This
feasibility test provides valuable insight, although the topic
of interpolation noisy data on a complex surface requires a
dedicated study. We extracted 175 electrodes located on the
upper hemisphere of the 256-electrode Geodesic Sensor Net
montage by Philips. The electrodes were projected on the
scalp and adjusted to the nearest vertices of the grid using
FieldTrip software [53]. The Dirichlet data were produced by
interpolating the simulated potential from the electrodes to
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(a) (b) (c)

Fig. 6. Interpolation from the electrodes to mesh vertices. Panel (a). Dirichlet data interpolated from the noise-free electrode data. Panel (b). The
error induced by the interpolation from the noise-free electrode data. Panel (c). The error induced by the interpolation from the noisy electrode data.
The noisy Dirichlet data are not shown because the difference with panel (a) is hardly visible.

(a) (b)

(c)

Fig. 7. Impact of the interpolation error, noise, and the choice of the grid on the source reconstruction. Panel (a): Dirichlet data were directly
simulated by FEM in vertices of the grid. Panel (b): Dirichlet data were interpolated from noise-free electrode data. Panel (c): Dirichlet data were
interpolated from the electrode data contaminated with 5% noise. In the first two case the forward and inversion grids coincided (”the inverse crime”),
whereas in the last case the inverse grid differed from the forward one.

intermediate vertices of the grid with spherical splines [54],
[55]. We used CSD Toolbox [56], [57], which was modified
to interpolate data from the electrodes to arbitrary number
of intermediate points and increase accuracy. The following
parameter were used (see [55]): m = 4, n = 10, λ = 0.
Head is not spherical, so this approach creates considerable
non-stochastic error (Figure 6a,b). The reconstruction was
performed with ε = δ = 10−4. The cortical potential,
reconstructed from interpolated and the original data (Figure
7a,b), are consistent, although interpolated data resulted in a
less pronounced active zone.

Finally, we added noise to the data and used a different
grid in the reconstruction procedure to avoid the so-called
inverse crime. The simulated potential on the electrodes was
contaminated with Gaussian noise. The noise had zero mean
and the standard deviation equal to 5% of that of the potential
on the electrodes. The contaminated data were interpolated to

the grid with exactly the same procedure as before. The grid
used in the interpolation and, subsequently, reconstruction,
differed from the simulation grid. It was resampled from
the same surfaces but with different parameters totaling to
658,513 tetrahedrons. The reconstruction was performed with
ε = δ = 10−4. Still, the potential on the cortex is consistent
with the previous results (Figure 7c).

V. DISCUSSION

The present paper proposes a novel numerical procedure for
reconstructing the electric potential and current on the cortex
from EEG data. The algorithm is based on the mixed quasi-
reversibility method and a FE discretization. The regularized
inverse problem is discretized in a finite-element space di-
rectly, resulting in a sparse system of linear equations. The
advantage of the algorithm can be summarized as follows.
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• Most notably, it does not rely on the solution of the for-
ward problems. It dramatically simplifies a programming
implementation and may reduce compute load, because
the precomputation of the lead-field matrix is avoided.

• It works with complex geometries based on MRI scans,
including ones with holes in the surfaces and disjoint
tissues.

• The size of the problem is reduced by excluding the brain
from the grid.

• The algorithm can be easily extended to anisotropic
conductivity.

• Constraints in different function spaces are readily incor-
porated in the algorithm (we used || · ||H1 only).

Some caveats need to be outlined. First of all, the approach
is limited to the case when the impressed current J is zero
outside some boundary ΓB (such as the cortex), including the
case when ΓB is a set of several disjoint surfaces (e.g. the
two disjoint hemispheres). If J is attached to ΓB , then the
reconstructed Ohmic current on ΓB is a discrete approximation
of J , both normal and tangential components. If there are some
sources inside ΓB , their Ohmic current will contribute to the
reconstructed value of J on ΓB .

It is of interest to compare the presented method with FEM-
based linear estimators (such as MNE) with a FEM-based
forward solver. The forward solver can be of any type, such as
the classical node-based elements, mixed FEM, discontinuous
Galerkin, and others. Both approaches can handle almost
arbitrary complex head geometries and material properties.
The fundamental difference between them is that the latter
explicitly build Green’s operator to reduce the source recon-
struction problem to a small discrete minimization problem.
The presented method, in a sense, works in the other way
round. It performs extension from discrete data to a trace of a
function and then searches for a function in the head. The first
approach provides flexibility because the candidate dipoles do
not have to be restricted to a closed surface and can have
arbitrary orientations. On the other hand, it becomes redundant
if these restrictions are introduced. The candidate dipoles can
be replaced with a dipole layer, the volume inside the surface
is excluded from the grid and, eventually, Green’s operator (a
FEM forward solver) can be avoided altogether.

There are other choices of finite elements. Problem (7) can
be reformulated with respect to the potential u ∈ H1(Ω) and
the Ohmic current j = σ∇u ∈ Hdiv(Ω). The pair (u, j) is
then approximated in a H1(Ω)×Hdiv(Ω)-conforming finite-
element space, as presented in [58]. The main advantage of
this approach is the resulting discrete solution is conservative.
On the other hand, the implementation is somewhat more
involving. It should also be noted that if σ = 1, then problem
(8) is essentially the biharmonic problem [45], for which a
variety of discretizations is available.

Data interpolation is an important aspect. Real EEG data
are measured with, at best, several hundred electrodes, so
interpolation from electrodes to the surface of the head is
necessary. This requirement is fundamental because specifying
g ∈ H1/2(ΓD) in a finite set of points on ΓD does not define
it uniquely. On the discrete level, a value of uh on a boundary
triangle is specified only if it is specified on the three vertices.

Further work should include a study of the interpolation of
data on a 3D surface.

Another open issue is the solution of the resulting system
of linear equations, which comprises the bulk of the run
time. Methods to accelerate this step need to be studied, in
particular, parallel sparse direct solvers and preconditioned
iterative solvers.

Finally, although the algorithm is theoretically stable, rig-
orous research on real noisy EEG data is necessary.

VI. CONCLUSION

This paper proposes a novel numerical procedure for recon-
structing the electric potential and current on the cortex from
EEG data. The algorithms is designed for a specific class of
problems (cortically constrained source estimations), but very
flexible in terms of the head geometry and material properties.
The approach is based on the reduction of the regularized
inverse problem to a saddle-point variational system, which
is directly discretized in a finite-element space. The discrete
solution is constructed with a single linear solve. Our results
suggest that this approach can serve as a basis for fast and re-
liable cortically-constrained source reconstruction algorithms.
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[31] M. Junghöfer, T. Elbert et al., “Mapping EEG-potentials on the surface
of the brain: A strategy for uncovering cortical sources,” Brain Topog-
raphy, vol. 9, no. 3, pp. 203–217, Mar 1997.

[32] C. Tenke and J. Kayser, “Reference-free quantification of EEG spectra:
Combining current source density (CSD) and frequency principal com-
ponents analysis (fPCA),” Clinical Neurophysiology, vol. 116, no. 12,
pp. 2826 – 2846, 2005.

[33] D. Haor, R. Shavit et al., “Back-projection cortical potential imaging:
theory and results,” IEEE Transactions on medical imaging, vol. 36,
no. 7, 2017.

[34] Bin He, Yunhua Wang, and Dongsheng Wu, “Estimating cortical po-
tentials from scalp EEGs in a realistically shaped inhomogeneous head
model by means of the boundary element method,” IEEE Transactions
on Biomedical Engineering, vol. 46, no. 10, pp. 1264–1268, Oct 1999.

[35] Bin He, X. Zhang et al., “Boundary element method-based cortical
potential imaging of somatosensory evoked potentials using subjects’
magnetic resonance images,” NeuroImage, vol. 16, pp. 564–0576, Jul
2002.

[36] M. Clerc and J. Kybic, “Cortical mapping by Laplace–Cauchy trans-
mission using a boundary element method,” Inverse Problems, vol. 23,
no. 6, 2007.

[37] A. Gevins, P. Brickett et al., “Beyond topographic mapping: toward
functional-anatomical imaging with 124-channel EEGs and 3-D MRIs,”
Brain topography, vol. 3, no. 1, pp. 53–64, 1990.

[38] A. S. Gevins and J. Le, “EEG spatial enhancement method and system,”
U.S. Patent 5 331 970, Jul. 26, 1994.

[39] ——, “EEG deblurring method and system for improved spatial detail,”
U.S. Patent 5 568 816, Oct. 29, 1996.

[40] L. Bourgeois, “A mixed formulation of quasi-reversibility to solve the
Cauchy problem for Laplace’s equation,” Inverse Problems, vol. 21,
no. 3, 2005.

[41] ——, “Convergence rates for the quasi-reversibility method to solve
the Cauchy problem for Laplace’s equation,” Inverse Problems, vol. 22,
no. 2, 2006.

[42] N. Koshev, N. Yavich et al., “FEM-based scalp-to-cortex EEG data
mapping via the solution of the Cauchy problem,” J. Inverse Ill-Posed
Probl., vol. in print, 2020.

[43] G. Folland, Introduction to partial differential equations. Princeton
Academic Press, 2001.

[44] G. Alessandrini, L. Rondi et al., “The stability for the Cauchy problem
for elliptic equations,” Inverse Problems, vol. 25, no. 12, p. 123004, nov
2009.

[45] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods.
Berlin, Heidelberg: Springer-Verlag, 1991.

[46] O. C. Zienkiewicz and J. Z. Zhu, “The superconvergent patch recovery
and a posteriori error estimates. part 2: Error estimates and adaptivity,”
International Journal for Numerical Methods in Engineering, vol. 33,
no. 7, pp. 1365–1382, 1992.

[47] “MFEM: Modular finite element methods library,” mfem.org.
[48] T. A. Davis, “A column pre-ordering strategy for the unsymmetric-

pattern multifrontal method,” ACM Trans. Math. Softw., vol. 30, no. 2,
p. 165–195, Jun. 2004.

[49] J. A. Reeger and B. Fornberg, “Numerical quadrature over the surface of
a sphere,” Studies in Applied Mathematics, vol. 137, no. 2, pp. 174–188,
2016.

[50] H. Si, “TetGen, a Delaunay-based quality tetrahedral mesh generator,”
ACM Trans. on Mathematical Software, vol. 41, no. 2, p. Article No.11,
2015.

[51] Q. Fang and D. Boas, “Tetrahedral mesh generation from volumetric bi-
nary and gray-scale images,” in Proceedings of International Symposium
on Biomedical Imaging 2009. IEEE, 2009, pp. 1142–1145.

[52] “FreeSurfer: an open source software suite for processing and analyzing
(human) brain MRI images,” http://surfer.nmr.mgh.harvard.edu/.

[53] R. Oostenveld, P. Fries et al., “FieldTrip: Open source software for
advanced analysis of MEG, EEG, and invasive electrophysiological
data,” Computational Intelligence and Neuroscience, vol. vol. 2011,
Article ID 156869, 2011.

[54] G. Wahba, “Spline interpolation and smoothing on the sphere,” SIAM
Journal on Scientific and Statistical Computing, vol. 2, no. 1, pp. 5–16,
1981.

[55] F. Perrin, J. Pernier et al., “Spherical splines for scalp potential and
current density mapping,” Electroencephalography and clinical Neuro-
physiology, no. 72, pp. 184–187, 1989.

[56] J. Kayser and C. Tenke, “Principal components analysis of Laplacian
waveforms as a generic method for identifying ERP generator patterns:
I. Evaluation with auditory oddball tasks,” Clinical Neurophysiology,
vol. 117, no. 2, pp. 348–368, 2005.

[57] “Kayser, J. (2009). Current source density (CSD) interpolation us-
ing spherical splines - CSD Toolbox (Version 1.1), New York
State Psychiatric Institute: Division of Cognitive Neuroscience,”
http://psychophysiology.cpmc.columbia.edu/Software/CSDtoolbox.
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