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Abstract— For interpretation of electroencephalography
(EEG) and magnetoencephalography (MEG) data, multiple
solutions of the respective forward problems are needed.
In this paper, we assess performance of the mixed-hybrid
finite element method (MHFEM) applied to EEG and MEG
modeling. The method provides an approximate potential
and induced currents and results in a system with a pos-
itive semi-definite matrix. The system thus can be solved
with a variety of standard methods (e.g. the preconditioned
conjugate gradient method). The induced currents sat-
isfy discrete charge conservation law making the method
conservative. We studied its performance on unstructured
tetrahedral grids for a layered spherical head model as well
as a realistic head model. We also compared its accuracy
versus the conventional nodal finite element method (P1
FEM). To avoid modeling singular sources, we completed
our computations with a subtraction approach; the derived
expression for the MEG response different from earlier
published and involves integration of finite quantities only.
We conclude that although the MHFEM is more computa-
tionally demanding than the P1 FEM, its use is justified
for EEG and MEG modeling on low-resolution head models
where P1 FEM loses accuracy.

Index Terms— EEG, MEG, forward problem, unstructured
grids, mixed-hybrid finite element method, subtraction ap-
proach.

I. INTRODUCTION

Electroencephalography (EEG) and magnetoencephalogra-
phy (MEG) are two noninvasive modalities to investigate
living brain activity. They feature excellent temporal resolution
and thus are commonly applied in clinical and experimental
settings.

Accurate interpretation of EEG and MEG data requires
multiple solutions of the forward problem, which describes
propagation of the neural currents within the head volume
conductor. The quasi-static mode of Maxwell’s equations is
typically assumed [1].

The forward problem seeks a response due to a single
cortical dipole. Numerical methods are needed to solve these
equations for anatomical head models, typically resulting from
MRI followed by segmentation of the scans. However, numer-
ical modeling is complicated by the complex geometry of the
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head tissues as well as by their conductivity inhomogeneity
and possibly anisotropy, and source singularity.

Conventional (i.e. Lagrange P1 nodal) finite-element
method (FEM) modeling is used for several decades for EEG
modeling (e.g. [2], [3]) due to excellent geometrical flexibility
needed for anatomical head modeling. The method also results
in a symmetric positive semi-definite system of equations,
making many solvers applicable [4]. On the other hand, two
fundamental limitations of the method should be noted. Firstly,
conventional FEM disregards the charge conservation law what
in some cases (e.g. highly localized sources or heterogeneous
problems) results in inaccurate responses. Secondly, the MEG
response when computed via Biot-Savart’s law, depends on the
gradient of the potential. However, the gradient has a slower
convergence, i.e. found less accurate than the potential. This
overall results in a less accurate MEG response. Alternatively,
the Geselowitz formula [1] can be used to compute MEG data,
but it still cannot be applied when conductivity is anisotropic
or organ surfaces are not closed, e.g. the fontanel in the skull
of human neonates.

The finite-volume method (FVM) [5], is known to be con-
servative and results in a positive semi-definite system matrix.
Another known alternative is the discontinuous Galerkin (DG)
FEM method which resolves the issue of violation of charge
conservation (see e.g. [6]–[8]).

Mixed FEM [9] explicitly enforces charge conservation and
thus is attractive for heterogeneous problems like head volume
conductor modeling. The method features computation of both
solution and its normal flux. In this case, the integrated charge
conservation law is directly enforced over each element.
However, its main disadvantage is that the resulting system
of equations has an indefinite matrix since the problem has a
saddle-point structure. This is inconvenient for practical use of
mixed FEM schemes, though the system can be solved with
the Uzawa algorithm [10].

There is a technique called hybridization which introduces
extra unknowns (interelement multipliers) to the mixed FEM
formulation. After simple manipulations, the extended system
can be reduced to a positive semi-definite one and thus can
be solved with a variety of standard methods. We thus see
that mixed hybrid FEM (MHFEM) combines many benefits
compared to its competitors.

An application of the mixed FEM to EEG modeling on
structured cubic grids was presented in [11]. In our work, we
focus on the use of unstructured tetrahedral grids for EEG and
MEG modeling. We also present and assess a hybridization
technique as well as introduce a subtraction approach for the
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mixed FEM. As far as the authors are concerned, none of these
topics were earlier discussed for EEG and MEG modeling.

II. EEG/MEG FORWARD PROBLEM

Neural currents recorded by EEG and MEG sensors are of
relatively low frequency, from 0.1 to 100 Hz. In this frequency
range, signal propagation within the heterogeneous head vol-
ume conductor Ω is governed by the diffusion equation for
the potential p, completed by Neumann boundary conditions
on the conductor boundary Γ,

−div(σ∇p) = −div J in Ω,

σ∇p · ν = 0 on Γ.
(1)

Here, J is source current density, σ is conductivity and ν is
the unit outward normal to Γ. The potential p is known to be
defined up to an additive constant. Each head organ is expected
to have constant conductivity σi, i = 1 · · ·N . The surfaces
separating different organs are denoted as Sj , j = 1 · · ·M .

The magnetic induction, B, is formed by the primary,
Bp(r), and secondary, Bs(r), terms,

B(r) = Bp(r) +Bs(r). (2)

For a dipole source, Bp(r) is found analytically, while Bs(r)
can be found via the Biot-Savart’s law,

Bs(r) = −µ0

4π

∫
Ω

σ∇p(r′)× r − r′

|r − r′|3
dV ′. (3)

We emphasize that Biot-Savart’s law involve volume inte-
gration, what results in high computational complexity of
the expression for Bs(r). Alternatively, the secondary mag-
netic induction can be expressed through surface integrals
(Geselowitz formula, [1]),

Bs(r) =
µ0

4π

M∑
j=1

(σ′j − σ′′j )

∫
Sj

p(r′)
r − r′

|r − r′|3
× νdS′, (4)

where ν is a unit normal to Sj and directed from a subdomain
with conductivity σ′j to a subdomain with conductivity σ′′j .

III. MODELING METHODS

Mixed methods are based on a reformulation of a second-
order equation to two first-order equations. Notice that the
second-order equation (1) can be transformed in at least
two ways. The first is quite traditional for general diffusion
problems [9],

1

σ
w +∇p = 0,

−div w = div J .
(5)

while the second looks attractive for direct current modeling,
[11],

1

σ
u+∇p =

1

σ
J ,

−div u = 0.
(6)

Both formulations are completed with homogeneous Neumann
boundary conditions.

We will continue with the second formulation since it
avoids differentiation of the source current density. In this
formulation, u = J − σ∇p corresponds to induced currents.
Neural sources modeling involves incorporation of dipole
sources (equivalent current dipole notion, [12]). To avoid direct
incorporation of dipole sources, we combined (6) with the
subtraction method, Appendix C. In other applications, this
method is also referred as singularly removal, [13]. It basically
substitutes J with the secondary source as well as substitutes
homogeneous Neumann boundary condition with inhomoge-
neous. Nevertheless, to make the presentation clearer, we still
follow the notations of (6).

Let us now introduce mixed-hybrid approximation to (6).
Define Th = {V1 · · ·Vn} to be regular partitioning of Ω into
n tetrahedrons, and γsr be the face between tetrahedrons Vs
and Vr, 1 ≤ s, r ≤ n. We further denote as Fh the set of all
the faces and their total number as m.

Multiply the first equation in (6) with an arbitrary vector
field v, and the second equation with an arbitrary scalar field
q. Integration over a tetrahedron Vs results in the following
identities,∫

Vs

1

σ
u · vdV +

∫
Vs

∇p · vdV =

∫
Vs

1

σ
J · vdV,

−
∫
Vs

q div udV = 0.

(7)

Applying Green’s identity and divergence theorem to the
second term in the first equation, we receive,∫
Vs

1

σ
u·vdV−

∫
Vs

p div vdV+

∫
∂Vs

p v·νdS =

∫
Vs

1

σ
J ·vdV.

(8)
Denote as λ values of the potential on the grid faces, i.e. if
γsr ∈ Fh is some face between tetrahedron s and tetrahedron
r, then λ(r) = p(r) for r ∈ γsr.

We make use of the standard notation for the space of
square-integrable functions over the modeling domain, L2(Ω),
and over faces, L2(Fh). The space H(div,Ω) consists of L2

vector fields with divergence in L2. Also define

U = {v ∈ L2(Ω), v|Vs
∈ H(div, Vs)},

Q = L2(Ω),

Λ = {µ ∈ L2(Fh), µ|γsr ∈ L2(γsr), γsr ∈ Fh}.
(9)

Note that vector fields from U might be discontinuous across
the element interfaces. Summing up the identities over tetrahe-
drons, we arrive to mixed-hybrid formulation: find (u, p, λ) ∈
U ×Q× Λ such that∫

Ω

1

σ
u · vdV −

∫
Ω

p div vdV

+
n∑
s=1

∫
∂Vs

λ v · νdS =

∫
Ω

1

σ
J · vdV,

−
∫

Ω

q div udV = 0.∑
1≤s<t≤n

∫
γst

µ(us − ut) · νdS = 0.

(10)

for all (v, q, µ) ∈ U × Q × Λ. The third set of equations
enforces continuity of the normal component of the induced
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currents as well as fulfillment of the Neumann boundary
condition. Consequently, in this formulation, components of
λ are commonly referred to as interelement or Lagrange
multipliers.

For finite-element solution of (10), define the following
finite-dimensional subspaces,

Uh = {vh ∈ L2(Ω), vh|Vs
∈ RT0(Vs)},

Qh = {qh ∈ L2(Ω), qh|Vs
∈ P0(Vs)},

Λh = {µh ∈ L2(Fh), µh|γsr ∈ P0(γsr), γsr ∈ Fh}.
(11)

where P0(Vs) and P0(γsr) are the spaces of constant functions
of a tetrahedron or face, respectively; RT0(Vs) is the lowest-
order Raviart-Thomas space of affine vector functions, [14].
Higher-order approximations could be considered in a similar
way. Also note that continuity of vector fields from Uh is
relaxed. Now the finite-dimensional counterpart is as follows:
find (uh, ph, λh) ∈ Uh ×Qh × Λh such that∫

Ω

1

σ
uh · vhdV −

∫
Ω

ph div vhdV+

n∑
s=1

∫
∂Vs

λh vh · νdS =

∫
Ω

1

σ
J · vhdV,

−
∫

Ω

qh div uhdV = 0,∑
1≤s<t≤n

∫
γst

µh(ush − uth) · νdS = 0.

(12)

for all (vh, qh, µh) ∈ Uh ×Qh × Λh.
The resulting system of linear equation has the following

form, A −B C
−BT 0 0
CT 0 0

 uh
ph
λh

 =

 fh
0
0

 . (13)

Entries of the system matrix and right-hand side are expressed
through the basis function of (11). Let vi, i = 1 · · · 4n, qs, s =
1 · · ·n, and µk, k = 1 · · ·m be the basis functions of Uh, Qh
and Λh, respectively. We then can write,

Aij =

∫
Ω

1

σ
vi · vjdV, Bsj =

∫
Ω

qs div vjdV,

Cik =

∫
γi

µk(vi − vi′) · νdS, fi =

∫
Ω

1

σ
J · vidV,

where vi and vi′ are two basis functions in the two tetrahe-
drons sharing face γi and corresponding to degree of freedom
on this face.

We would like to emphasize that the second equation of
(6) enforces the charge conservation law. This equation is
then directly involved in (7) and (12), (13). Consequently, the
numerical induced current, uh, satisfies this equation within
every tetrahedron with machine precision, given we solved
(12) exactly.

The mixed finite element system, [9], has size n+m and a
somewhat similar block structure. However, several important
differences should be emphasized. The size of (13) is 5n+m,
i.e. the hybridized system is actually larger. In Appendix A,
we describe a procedure to elegantly eliminate uh and ph from

this system and receive a system for interelement multipliers
only,

S λh = gh. (14)

This system has a sparse symmetric positive semi-definite
matrix and its size is equal to the number of faces, m. Conse-
quently, for this system, an efficient solver is straightforward
to construct, e.g. the conjugate gradient method with an AMG
preconditioner, for example [15].

After λh is found, the potential ph and induced currents
uh can be recovered. To summarize, we described a conser-
vative finite-element scheme which requires O(m log(1/ε))
arithmetical operations for a single solution, where ε is the
desired tolerance. Elimination and recovery of ph and uh take
linear time.

When induced currents are found, the magnetic flux is
computed via (3),

B(r) =
µ0

4π

∫
Ω

u(r′)× r − r′

|r − r′|3
dV ′. (15)

Alternatively, since the MHFEM provides an approximation
for face-centered potential values, λ, we can exploit them in
the Geselowitz formula and obtain the secondary magnetic
induction, Bs(r),

Bs(r) =
µ0

4π

M∑
j=1

(σ′j − σ′′j )

∫
Sj

λ(r′)
r − r′

|r − r′|3
× νdS′. (16)

We will examine both options in the next section.
For dipole source modeling, we represented (3) and (15)

so that they would involve integration of finite quantities only
(Appendix B and C).

IV. MODELING EXAMPLES

In this section, we discuss implementation details as well
as present and analyze the results of numerical modeling of
the described above mixed-hybrid FEM for layered spherical
and real head models.

A. Implementation
We implemented the mixed-hybrid FEM for EEG and MEG

data modeling on unstructured tetrahedral grids. Our imple-
mentation was in C++ and used the Modular FEM library
[16]. The large sparse linear system (14) was solved with
the conjugate gradient method leveraged by the BoomerAMG
preconditioner, [15], and solver tolerance, ε, was set to 10−10.
All the integrations were performed with the second-order
quadratures. For a comparison purpose, we also implemented
the conventional P1 FEM. Both FEMs were completed with
the subtraction method to avoid modeling source singularity
(Appendices B and C).

B. EEG and MEG Data Modeling in a Layered Spherical
Head

In this subsection, we modeled the EEG and MEG data
within a layered spherical head. In this head model (Fig. 1.),
the brain counterpart had 7.8 cm radius and conductivity 0.3
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Fig. 1: Layered spherical head with the standard 10-10 EEG
layout (yellow balls) and 102 tangential magnetometers (violet
arrows). Color corresponds to different tissues: red – brain,
yellow – CSF, turquoise – skull, blue – scalp.

S/m, the CSF had 8 cm radius and conductivity 1.5 S/m, the
skull had 8.5 cm radius and conductivity 0.015 S/m, and the
scalp had 9 cm and conductivity 0.3 S/m. This head model
was gridded using Iso2Mesh [17] package. Three tetrahedral
grids were prepared for our experiments below. One is fairly
typical for finite-element EEG/MEG modeling (Fig. 2), yet
with possibly an excessive resolution; it had 777’425 vertices,
9’877’505 faces, 4’927’680 tetrahedrons, the maximum edge
length of 0.36 cm and the minimum of 0.06 cm. It will
be referred to as the fine grid since the tetrahedrons are of
relatively the same size. The second one was intentionally
picked of fairly low resolution and not aligned with surfaces
separating different tissues, Fig. 3. It mimics the situation
when an MRI image had artifacts [18] and/or was segmented
coarsely. We will refer this grid as coarse. It had 29’644
vertices, 350’800 faces, 174’289 tetrahedrons, the maximum
edge length of 4.3 cm and the minimum of 0.1 cm. The third
one was received a single uniform refinement of the coarse
grid and will be referred to as the refined grid. Summary of
grid parameters is presented in Table I.

We want to comment on our particular choice of the fine
grid. In [4], it was shown that the subtraction approach
achieves higher numerical accuracy if a mesh has a higher
density towards tissue interfaces where the right-hand side
is non-zero. Still, we used a relatively uniform grid because
it is more convenient for examining the numerical solution
convergence with respect to grid size. One can expect a
theoretical order of convergence on a sequence of uniform
grids. Another benefit of the uniform mesh resolution is that
our results easier to reproduce since the grids are controlled
by a single parameter. In a scenario where the goal is not
algorithm design but an applied EEG modeling with the
highest possible accuracy, the grids should be adapted to tissue
interfaces.

We modeled EEG and MEG responses due to dipole
sources. Dipoles were located at eight different eccentricities

Fig. 2: The fine tetrahedral grid for the layered spherical head;
color indicates conductivity, S/m

Fig. 3: The coarse tetrahedral grid for the layered spherical
head; color indicates conductivity, S/m. Since the grid is not
aligned with surfaces separating different tissues, conductivity
values shown here were averaged over elements

(ratio of the distance from the head center to dipole to the
brain counterpart radius) varying from 0.10 to 0.99 unevenly.
The most eccentric source was thus 0.78 mm from the CSF
counterpart. At every eccentricity, we modeled 15 randomly
oriented dipoles. We thus solved 120 forward problems overall
at every grid.

We verified the responses at 71 electrode locations (corre-
sponding to the standard 10-10 layout) and 102 magnetometer
locations (corresponding to Elekta Neuromag®TRIUX™ sys-
tem), Fig. 1. The magnetometer locations were scaled so that
they would locate 3 cm outside the head. Since the normal
component of the secondary magnetic field vanishes for this
head model, we verified one of the tangential components.

An analytical expression for the MEG response is fairly
simple (see e.g. [1]) while the expression for the EEG response
is more complex. Our numerical solution was compared versus
analytical formula, [19], available in a public-domain imple-
mentation. P1 FEM EEG response was compared versus MH-
FEM response (potential obtained from (13) and (25)). Using
P1 and mixed-hybrid FEMs we computed MEG responses

TABLE I: Summary on the two tetrahedral grids used for the
layered spherical head; n number of tetrahedrons, l number of
vertices, m number of faces, hmax longest edge, hmin shortest
edge

n l m hmax hmin

fine 4’927’680 777’425 9’877’505 0.36 cm 0.06 cm
coarse 174’289 29’644 350’800 4.3 cm 0.1 cm
refined 1’394’312 235’798 2’797’512 2.1 cm 0.05 cm
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with Biot-Savart (31),(36) and Geselowitz representations (32),
(37).

Two error measured were used to analyze the error, RDM
and MAG, estimating topography and magnitude errors, re-
spectively,

RDM =

∥∥∥∥ dnum
‖dnum‖

− dana
‖dana‖

∥∥∥∥ ,
MAG =

∣∣∣∣1− ‖dnum‖‖dana‖

∣∣∣∣ , (17)

where dnum is the numerical solution at electrode or magne-
tometer locations and dana is the respective analytical solution,
and ‖ · ‖ denotes the euclidean norm.

Figure 4 illustrates the RDM and MAG error boxplots of the
EEG and MEG responses versus source eccentricity, modeled
with the fine grid. For EEG data, MHFEM errors are mainly
higher than those of P1 FEM. This follows from convergence
estimates. For the potential variable in the L2(Ω) space, they
are as follows: O(h2) for the P1 approximation of the potential
in the Lagrange FEM and O(h) for the P0 approximation of
the potential in the mixed FEM and MHFEM. This is reflected
in our EEG fine grid modeling results.

We observe that the EEG data errors tend to grow with
eccentricity. This is common for the subtraction method, [20].
From MEG data errors, we see that the Biot-Savart formula
is more accurate at higher eccentricities for both FEMs, while
the Geselowitz formula loses accuracy; this is typical for BEM
modeling, [21].

Figure 5 shows the results of modeling with the coarse grid.
We observe here that the MHFEM is more accurate than P1

FEM both for EEG and MEG modeling. We attribute this to
the conservation property of the MHFEM which is critical
to model induced currents on low-resolution grids. A similar
effect was noticed in [8], [7] for hexahedral grid modeling and
was referred to as skull leakage. Modeling with Geselowitz
was not included in this test since the coarse grid is not fitted
to the organ geometry.

Table II summarizes the computational load of the P1

FEM and MHFEM. We averaged run-time and iteration count
over all the dipole sources tested on a particular grid. We
observe that solution of the MHFEM system takes roughly
15 times longer than that of the P1 FEM. This is mainly
due to the MHFEM system size which is approximately 12
times larger (ratio of the number of faces to the number of
nodes in our unstructured tetrahedral grids, Table I). The AMG
preconditioner performs fairly well for both FEMs, yet in the
case of the MHFEM the iteration count is somewhat higher.
Also, the iteration count for the fine grid is quite small (20
iterations for the P1 FEM, 27 iterations for the MHFEM) what
illustrates optimality of the applied solver.

To justify higher computational expenses of the MHFEM,
we compared P1 FEM on the refined grid versus the MHFEM
on the coarse grid. From Fig. 5, we see that for EEG modeling
P1 FEM on the refined grid provides comparable or better
accuracy than the MHFEM on the coarse grid. While for
MEG modeling, MHFEM on the coarse grid has mainly better
accuracy than P1 FEM on the refined grid. For EEG modeling,
P1 FEM on the refined grid is faster than the MHFEM on

the coarse grid. This is related to the system size (235’798
unknowns for P1 FEM versus 350’500 unknowns MHFEM)
and iteration count (23 versus 38, respectively). However, in
MEG modeling, we see that the MHFEM on the coarse grid
is more than an order of magnitude faster than P1 FEM on the
refined grid. This is related to the computational complexity of
the Biot-Savart formula, which is proportional to the number
of tetrahedrons. We resume, that the MHFEM is beneficial for
MEG modeling on coarse grids both in terms of accuracy and
computational expenses.

In real data processing, the transfer matrix approach [22] is
typically applied to move the burden of the forward modeling
from a computational to a pre-computational step. The ap-
proach is equally applicable to both P1 FEM and MHFEM
discretization methods as well as to both EEG and MEG
data. The CPU time at the pre-computational step can be
estimated as single-source modeling time multiplied by the
number of sensors. At the computational step, the CPU time
is proportional to the number of sensors multiplied by the
dimension of a source finite-element space. Had we chosen
to apply the pre-computational step to the P1 FEM on the
refined grid and the MHFEM on the coarse grid for MEG data
modeling, we would have seen a dramatic difference in the
CPU time in favor of the MHFEM (Table II). The difference
in the pre-computational steps would have been multiplied by
the number of sensors. The computational steps would have
taken somewhat similar times, with some favor to P1 FEM
(the respective dimensions are mcoarse=350’800 for MHFEM
on the coarse grid and lrefined=235’798 for P1 FEM on the
refined grid, Table I). Still, the MHFEM would produce more
accurate MEG responses, as noted earlier (Fig 5).

We were unable to benchmark our code against the conven-
tional mixed FEM because it would require an implementation
of a separate solver. Still, some performance indicators on
the mixed FEM have been published for a layered spherical
head model. Thesis [23, Table 5.4] reported that the Uzawa
solver for the mixed FEM system took 60 s on a cubic
grid with 3’262’312 elements to achieve a tolerance of 1e-
8. Our solver took 165 s for the fine tetrahedral grid with
4’927’680 elements to achieve a tolerance of 1e-10. We
cannot compare these numbers directly due to differences in
target tolerance, computational systems, head discretization,
etc. However, considering that the Uzawa solver for the mixed
FEM system can be implemented with the potential variable
only, it is likely that the mixed FEM will be faster in most EEG
modeling scenarios. We hope to perform a dedicated study of
the two algorithms’ performance in the future.

The Geselowitz formula was 27-30 times faster than Biot-
Savart formula for calculation MEG responses, since the
former involve integration over organ surfaces only, while the
later requires integration over the whole head volume con-
ductor. The P1 FEM and MHFEM require roughly the same
CPU time when combined with Biot-Savart or Geselowitz
formulas. This computational load depends mainly on the
order of quadratures used in (31), (32), (36), (37) rather than
the FEM type.
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(a) (b)

(c) (d)

Fig. 4: RDM and MAG error boxplots of EEG and MEG data (Bs) for fine grid modeling

TABLE II: Computational load of the P1 FEM and MHFEM
on the fine, coarse, and refined grids: preconditioned conjugate
gradient iteration count (PCG it) and CPU time (PCG time),
CPU time required by Biot-Savart and Geselowitz formula.
Run-time and iteration count were averaged over all the dipole
sources tested on a particular grid

grid method PCG it PCG time Biot-Savart Geselowitz
fine P1FEM 20 11 s 247 s 9.1 s
fine MHFEM 27 165 s 262 s 8.5 s

coarse P1FEM 20 0.2 s 13.2 s –
coarse MHFEM 38 3.6 s 8.4 s –
refined P1FEM 23 2.3 s 104 s –

C. EEG and MEG Data Modeling in a Real Head

In this subsection, as a proof of concept, we modeled
EEG and MEG data over an anatomical head model. The
3D head model was built from T1-weighted MRI volume
and was earlier described in [24]. The final tetrahedral grid
consisted of four counterparts: the skin (0.43 S/m), skull (0.01
S/m), cerebrospinal fluid (1.79 S/m), and brain (0.33 S/m).
The grid contained 498’876 tetrahedrons, 85’528 vertices and
1’008’022 faces (Figure 6a) and had the maximum edge length
of 0.96 cm.

We modeled a dipole source located in the visual cortex
(Figure 6b). The dipole was tangential to the scalp, thus the

magnetic field was expected to be well-pronounced.
EEG data was collected at 129 electrode locations corre-

sponding to GSN HydroCel-129 montage. MEG data was col-
lected at 102 magnetometer locations corresponding to Elekta
Neuromag®TRIUX™ system, Figure 6a). The magnetometers
were assumed to be normal to the scalp.

Topographic EEG and MEG maps visualized in
MNE-Python [25] are shown in Figures 7. We note
that the MEG map is approximately 90◦ rotated relative to
the EEG map, what follows form the right-hand rule.

Table III shows the computational load in this experiment.
As in the above results, we see that P1 FEM EEG modeling
is much faster, while MEG modeling takes roughly the same
CPU time for both FEMs.

TABLE III: Computational load of the P1 FEM and MHFEM
for real head modeling: preconditioned conjugate gradient
iteration count (PCG it) and CPU time (PCG time), CPU time
required by Biot-Savart and Geselowitz formula.

method PCG it PCG time Biot-Savart Geselowitz
P1FEM 20 0.6 s 47 s 5.5 s
MHFEM 51 21.5 s 39 s 4.5 s
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(a) (b)

(c) (d)

Fig. 5: RDM and MAG error boxplots of EEG and MEG data (Bs) for coarse and refined grid modeling

V. DISCUSSION AND CONCLUSION

In this investigation, we introduced and assessed the MH-
FEM for EEG and MEG modeling on unstructured tetrahedral
grids. The MHFEM provides cell-centered potential, face-
centered potential through Lagrange multipliers, and normal
components of the induced current at face centers. These
discrete variables could be differently used to obtain EEG and
MEG responses. We studied these possibilities in our work.

We compared accuracy and run-time of MHFEM and con-
ventional P1 FEM on fine, coarse, and realistic grids. Although
run-time performance is very implementation-dependent, it
gave a good indication of the computational complexity. Our
experiments on EEG modeling show that the use of MHFEM
is beneficial on coarse grids or low-resolution head models.
In this setting due to fulfillment of the discrete charge conser-
vation property, MHFEM accurately models induced currents.
This complies with earlier works [8], [7]. AMG preconditioned
conjugate gradient solver optimality was observed for the
MHFEM system of equations: the iteration count even for a
very large grid of almost 5 million tetrahedrons was quite
moderate. As in the case of EEG modeling, MHFEM for
MEG modeling is more accurate than P1 FEM on low-
resolution grids. We noticed that the Biot-Savart formula
is substantially more computationally demanding than the
Geselowitz formula. However, the Geselowitz formula is not

applicable on low-resolution head models. Given a particular
MEG calculation formula, its run-time is of minor dependence
on the FEM type.

We also made a comparison P1 FEM modeling on the
refined grid versus MHFEM on the coarse grid. For EEG mod-
eling, P1 FEM accuracy was improved and its computational
expenses were close to those of MHFEM. While for MEG
modeling, we observed that MHFEM on the coarse grid is
more than an order of magnitude faster than P1 FEM on the
refined grid and also notably more accurate. We resume, that
MHFEM is beneficial for MEG modeling on coarse grids both
in terms of accuracy and computational expenses.

For dipole source modeling with the Biot-Savart formula,
we found a new representation that involves integration of
finite quantities only. It combines volume and surface integra-
tion and different from the one used in [7]. A somewhat close
expression was derived in [26, (2.26)], but they preferred to
perform surface integration over a small subdomain with the
source. On the other hand, our expression involves surface
integration over the head volume conductor boundary.

MHFEM system size is much larger than that of the conven-
tional P1 FEM what ultimately contributes to its solution time.
We thus plan to implement shared memory parallelization to
further leverage MHFEM modeling. Other future goals would
be to investigate this approach for gradiometer data modeling
as well as to combine it with source localization algorithms
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a)

b)

Fig. 6: a) Anatomical head counterparts (blue – brain, green –
CSF, yellow – skull, red – scalp) and EEG (yellow balls) and
MEG (violet arrows) montages. b) Dipole source (marked as
arrow) located in the visual cortex of the left hemisphere

(e.g. [27]) and potential propagation methods [28]. Another
application of this work is data-learned source localization [29]
requiring many accurately solved forward problems.

APPENDIX

A. Reduction of MHFEM system

In this appendix, we discuss properties of the MHFEM
system (13) and a procedure to transform it into a smaller
system.

Note that the support of the basis functions vi of Uh is
limited to a particular tetrahedron, thus matrix A is block-
diagonal with each block being 4x4 and corresponding to a
particular tetrahedron. Same for matrix B: each row has four
nonzero entries corresponding to a particular tetrahedron.

Practically, this means that we can eliminate uh,

uh = A−1(f +Bph − Cλh), (18)

b)

a)

Fig. 7: Topographic EEG and MEG maps: a) piece-wise affine
potential post-processed using induced currents; b) normal to
the scalp magnetic flux computed with the Biot-Savart law

and receive a Schur complement system,(
−BTA−1B BTA−1C
CTA−1B −CTA−1C

)(
ph
λh

)
=

(
BTA−1fh
−CTA−1fh

)
.

(19)
Matrix BTA−1B is diagonal, we thus can continue elimina-
tion,

ph = −(BTA−1B)−1[BTA−1fh −BTA−1Cλh], (20)

and receive a system for interelement multipliers only,

CT [A−1 −A−1B(BTA−1B)−1BTA−1]Cλh =

CT [A−1 −A−1B(BTA−1B)−1BTA−1]fh. (21)

This system appeared in the text as (14). The matrix is sparse
and symmetric. We can also show that it is positive semi-
definite if we rewrite it as

S = CTA−
1
2 (I − FFT )A−

1
2C, (22)

with F = A−
1
2B(BTA−1B)−

1
2 . The expression in the middle

of (22) is evidently an orthogonal projector and thus has
eigenvalues 0 and 1 only. Consequently, S is positive semi-
definite.

Although the expressions for the matrix and right-hand side
look quite complex, we should emphasize that they could be
computed in linear time. The Structure of A, B, and C allows
computing local submatrices of S following formula (21)
and directly assembling S from them. After λh is found, the
potential ph is recovered using (20) and uh is recovered using
(18).
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B. Subtraction Approach for the nodal FEM
The subtraction approach is very standard for EEG FEM

modeling (e.g. [30]), yet its application for MEG modeling
was not commonly discussed. This appendix discusses this
topic.

Consider a dipole source with moment Q located in r0 in
a subdomain with conductivity σp. Let pp be a potential due
to this source in a homogeneous space with conductivity σp,

−div(σp∇pp) = −div J in Ω. (23)

The expression for pp is well-known,

pp(r) =
1

4πσp

Q · (r − r0)

|r − r0|3
. (24)

Introduce the secondary conductivity, σs(r), and potential,
ps(r), such that

σ(r) = σs(r) + σp,

p(r) = pp(r) + ps(r).
(25)

Subtraction of (23) from (1) results in,

−div(σ∇ps) = div(σs∇pp) in Ω. (26)

which is an equation for the secondary potential. Boundary
conditions could be easily derived as well,

σ
∂ps
∂ν

= −σ∂pp
∂ν

on Γ. (27)

We refer to [30] for further discussion on the subtraction
method for EEG modeling. Let us now discuss computation
of the MEG response.

From (3), we have,

Bs(r) =− µ0

4π
σp

∫
Ω

∇p× r − r′

|r − r′|3
dV ′

− µ0

4π

∫
Ω

σs∇p×
r − r′

|r − r′|3
dV ′.

(28)

The integrand of the first term is singular at the dipole location.
We thus preferred to rewrite it as,

−µ0

4π
σp

∫
Ω

curl

(
p
r − r′

|r − r′|3

)
dV ′, (29)

which can expressed as a surface integral,
µ0

4π
σp

∫
Γ

p
r − r′

|r − r′|3
× ν dS′ (30)

Substituting p = pp + ps, we thus end up with,

Bs(r) =
µ0

4π
σp

∫
Γ

(pp + ps)
r − r′

|r − r′|3
× ν dS′

+
µ0

4π

∫
Ω

σs(∇pp +∇ps)×
r − r′

|r − r′|3
dV ′.

(31)

We emphasize that ps ∇ps are bounded within the modeling
domain. Also, σs∇pp is bounded since σs vanishes at the
dipole location. pp is bounded on Γ that is why computations
using the above formula involve only finite quantities (see the
discussion in [7] for comparison).

The Geselowitz formula in this setting takes the form,

Bs(r) =
µ0

4π

M∑
j=1

(σ′j − σ′′j )

∫
Sj

(pp + ps)
r − r′

|r − r′|3
× νdS′.

(32)

C. Subtraction Approach for the MHFEM

In this appendix, we discuss incorporation of the subtraction
approach into the MHFEM.

The mixed formulation of (26), (27) that we utilized in this
work is the following,

1

σ
us +∇ps = −σs

σ
∇pp,

−div us = 0.
(33)

completed with

us · ν = σb
∂pp
∂ν

on Γ, (34)

i.e. us = −σ∇ps − σs∇pp.
After solving the respective discrete system of equations we

receive an approximation to (us, ps, λs).
Now EEG response is given by substituting ps into (25),

while by substituting us in (15), we find the next way to
compute the magnetic field,

Bs(r) = −µ0

4π
σp

∫
Ω

∇pp ×
r − r′

|r − r′|3
dV ′

+
µ0

4π

∫
Ω

us ×
r − r′

|r − r′|3
dV ′.

(35)

As in Appendix B, we can avoid volume integration of the
unbound term ∇pp and express it as a surface integral. This
ultimately results in the following expression for Bs,

Bs(r) =
µ0

4π
σp

∫
Γ

pp
r − r′

|r − r′|3
× ν dS′

+
µ0

4π

∫
Ω

us ×
r − r′

|r − r′|3
dV ′.

(36)

The Geselowitz formula (16) now takes the form,

Bs(r) =
µ0

4π

M∑
j=1

(σ′j − σ′′j )

∫
Sj

(pp + λs)
r − r′

|r − r′|3
× νdS′.

(37)
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