This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2021.3121538, IEEE

Transactions on Geoscience and Remote Sensing

PREPARED FOR IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Application of optimal control to inversion of
self-potential data: theory and synthetic examples

M.S. Malovichko, A.V. Tarasov, N.B. Yavich, K.V. Titov,

Abstract—Last decades, there has been an increased interest in
the use of the self-potential (SP) method in hydrogeophysics. In
response to this strong interest, we develop a novel approach
to the inversion of SP data. Mathematically, the SP inverse
problem is the source identification problem for the Poisson
equation. Our approach substantially differs from the standard
regularization approach, which explicitly includes the forward-
problem operator into the cost functional. We formulated the
inverse problem is as an optimal control problem and then
translate it into a variational system. The system is approximated
in suitable finite-element spaces giving rise to an algebraic
problem with the saddle-point structure. In contrast to the
standard approach, which leads to a dense linear system, our
method results in a system with a sparse block matrix. It can be
efficiently solved by either direct sparse solvers or preconditioned
iterative solvers. In this paper, we present the formulation of the
problem and its finite-element approximation. We discuss the
iterative solution and preconditioning strategies. Our software
implementation is based on an industrial finite-element package.
We also present a numerical experiment with node-based linear
finite elements on tetrahedral grids. Our results suggest that the
proposed approach may serve as a rapid and reliable tool for
large-scale SP inverse problems. Moreover, the same technique
can easily be extended to a wide range of geophysical linear
inverse problems, such as inversions of magnetic and gravity
data.

Index Terms—inverse problem, self-potential, optimal control,
KKT system.

I. INTRODUCTION

HIS paper considers numerical aspects of source iden-

tification in the geophysical self-potential (SP) method.
Self-potential is one of the oldest geophysical techniques, and
is still widely used in mineral exploration, geological mapping
and hydrogeology [1]. Last decade, a breakthrough occurred
in the use of SP measurements for imaging underground water
flows and redox potential [2, 1, 3, 4, 5].

From the mathematical standpoint, the SP inverse problem
is the source identification problem for Poisson’s equation. Let
() be a bounded domain in R? with boundary I'. Let I' = T'pU
', where 'y represents the air-ground interface, with I'p
being the rest of the boundary. The electric potential satisfies
Poisson’s equation,

—div(cVu) = f in Q, (1.1)
ou
u=gp on I'p, Y =gy on I'y. (1.2)
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Here wu is the scalar electric potential, ¢ is the electric
conductivity, vector v is a unit outward normal. The right-
hand side of (1), f, represents the source term (in Am_?’),
generated by external currents I, thus f = div/. The external
currents arise from gradients of thermodynamic potentials
(pressure, chemical potential, and temperature) and are the
cross-coupled phenomena (e.g., [6]). We set gy = 0 and
gp = 0. Note that so-called “oblique” Dirichlet boundary
conditions on I'p are beneficial and have gained considerable
popularity in geophysics, see [7]. We, however, refrain from it
because it would complicate the presentation of our approach.
The problem (1) is well-posed; that is, it has a unique and
stable solution.

In the SP method, f is unknown. We measure potential in
a set of K points using so-called non-polarizing electrodes.
Based on observed data, we need to obtain a distribution of
current per cubic meter, f. Formally, we set up the following
inverse problem.

Given measured data d € RY, find f such that
K—1
> wiQiu—di)? <e, ()
i=0
with f and u satisfying (1).

Here € is the desired misfit, {w;} are positive weights.
Typically, the weights represent estimates of noise standard
deviations computed from measured data. Each operator Q;
maps potential u to the value in the ¢-th electrode. For
concreteness, let us define Q; as a convolution with the Dirac
delta function,

Qi(u) = /Qu(x) 0(x — x;)dV, 3)

where z; is position of i-th electrode.
In geophysics, a common approach to inverse problem (2)
is the unconditional minimization of the Tikhonov functional,

minigize % IWG() ~dIE+ SR @)

Here |||, is the £2 norm, v > 0 is the regularization parameter,
W is a diagonal matrix with weights w; on its diagonal, G is
the forward-problem operator that maps a given f to data
vector d, R is a (frequently quadratic) stabilization functional
that imposes constraints on f. Many variants of formulation
(4) exists, including non-quadratic R, various norms in which
the data misfit is measured (e.g. |-||,), iterative updating
of W, etc. Nevertheless, all of them are connected to this
basic formulation in one way or another. It is fundamentally
important that formulation (4) explicitly includes the forward-
problem operator G.
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Formulation (4) forms a basis for linear inversion of geo-
physical data. We refer to [8] for a comprehensive review.
Regarding inversion of SP data, this approach was used in
[9, 2, 10, 11, 12, 3, 13]. Similar problems arise in the
gravity and the low-susceptibility magnetic inversion, see
[14, 15, 16, 17] (among many others). All those examples
differ primarily in what quantity is reconstructed (f or I),
what are the data (potential u or its derivatives), how the
forward problem is formulated (the integral equations, finite
differences, etc.) and solved (direct or iterative solvers), and
whether ¢ is constant (gravity and magnetics) or varies in
space and, possibly, in time(SP). Note that the gravity migra-
tion by [18] in its iterative variant [19] is essentially equivalent
to the standard inversion (4). Here, we leave aside methods
leading to non-linear inverse problems, [20, 21], and those
based on the downward continuation [22].

Although the celebrated minimization (4) is widespread, it
posses some drawbacks. The most important one, in our view,
is that it leads to a resource-intensive numerical procedure.
It requires solving a normal system of linear equations with
a large dense matrix, known as the (regularized) Hessian.
Direct solvers require O(n?) storage and O(n3) operations
and quickly become prohibitive for big n, even on modern
supercomputers. On the other hand, iterative solvers suffer
from slow convergence because the system matrix is badly
conditioned. It is hard to improve the convergence because no
efficient preconditioning is available for the Hessian. Using the
“background” Hessian as a preconditioner is common, but its
performance severely degrades as conductivity o deviates from
the background conductivity. The matrix-vector multiplication
has to be implemented via the two forward-problem solves
for sufficiently big problems. Thus, thousands of solutions to
the forward problem are expected on large inverse problems
encountered in practice.

The optimal control (OC) framework is an alternative ap-
proach to the inverse problem (2). It is a firmly established
technique in PDE-constrained optimization [23]. Elements of
the OC have been routinely applied in geophysics to compute
the gradient and Hessian of the target functional through the
adjoint state variable (see [24, 25]), but solely within the
standard framework based on the normal system. To the best
of our knowledge, the only relevant papers that exploit the OC
to derive an alternative to the standard approach are [26, 27].

Within the OC framework, the inverse problem reduces to
a variational saddle-point problem followed by approximation
in a suitable finite-element (FE) space. The resulting system
matrix is three times bigger compared to the Hessian but has
a different structure. It is sparse, indefinite, and its blocks
are tightly connected to the underlined Poisson equation.
The application of modern direct sparse solvers can be very
efficient if the size of the problem is not too large. This matrix,
in principle, can be preconditioned using the matured theory of
the numerical solution of PDEs. Thus, for larger problems, the
application of an iterative solver may be beneficial, provided
an efficient preconditioner is available. On the other hand, the
OC approach has several difficulties, which may explain its
low popularity in geophysics. The direct solution of a sparse
indefinite system of equations is less stable and more resource-
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consuming compared to the positive definite matrices [28, 29].
As for the iterative solution, preconditioning of matrices of this
type is not a trivial task.

In this paper, we present an approach to the source recon-
struction problem based on the OC formalism. In essence,
our approach replaces the normal system of linear equations
with a dense matrix with another system with a larger but
sparse matrix. This matrix can be solved either directly with
a sparse direct solver or iteratively with a carefully designed
preconditioner. Although we primarily focus on the general
concept, we also discuss the numerical solution. We elaborate
on the formulation of the problem, its reduction to a variational
system, and a FE discretization. The presented numerical
experiments aim to verify the formulas and demonstrate this
approach’s applicability to realistic 3D problems. We did not
set ourselves to analyze various iterative solvers (this part of
the work has not been finished yet). Still, we present one
option, which seems quite effective, hoping to stimulate further
work in this direction. We believe that the OC approach has
great potential in geophysics and can become an alternative to
the standard minimization (4), at least in some scenarios.

Our paper significantly differs from papers [26, 27]. They
solve a coefficient inverse problem of quasi-static electromag-
netics, which is non-linear, whereas we solve a linear inverse
problem of source reconstruction. They use finite-difference
discretization, whereas we employ FEM, which is more
geometrically flexible. They discretize differential equations
and then find an optimal point (the discretize-then-optimize
method); we use the optimize-then-discretize method, which
is a better fit for the final-element framework. In addition, we
used a very different approach to preconditioning, compared
to those articles, although here we report preliminary results.

The paper is organized as follows. In Section II, we review
the standard approach. In Section III, we present the OC
approach and derive the variational system. Finite-element
discretization is discussed in Section IV. The connection
between the two approaches is discussed in Section V. The
iterative solution of the arising system of linear equations is
covered in Section VI. Section VII is dedicated to numerical
experiments. Concluding remarks are given in Section VIIL.

II. THE STANDARD APPROACH

Here we review Tikhonov’s approach in its classical form,
i.e., when the forward operator explicitly enters the target
function. Consider the following unconstrained optimization
problem,

K—1
C . 1 2 ) N2 & 2
minimize - Zwi(Qsz d;)” + 2/Q|J’-'Vf| av. (5)

=0

Here F is a smooth real-valued function designed to account
for the rapid decrease of sensitivity with depth. Operator S
maps a given f to potential v and thus represents the inverse
of the differential operator in (1). Since problem (1) is well-
posed, S exists. A scalar a > 0 is the regularization parameter,
which can be selected in various ways, such as Morozov’s
discrepancy principle [30, 8]. Looking ahead, any algorithm of

0196-2892 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution re%uir%s IElEE perglissioln. Sée ]attp://\oﬂwwki)eeeé)ig/ &gﬁcatigrészssta‘r‘)gabqls_/ ublications/rights/index.html for more information.
echnology. Downloaded on October y at 05:45:

from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2021.3121538, IEEE

Transactions on Geoscience and Remote Sensing

PREPARED FOR IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

choosing « for the standard method will work for our approach
(see Section V).

In geophysical applications, minimization problem (5) is
usually discretized first; the optimization is performed on the
discrete level. To make this section compatible with the rest
of this paper, we employed the finite-element method (FEM)
with linear node-based elements in a tetrahedral grid, although
many other options are available.

First of all, we define the discrete version of operator S,
that maps a given f to u. To simplify the formulas below, we
will assume that gy = 0, which is always true in geophysics.
First, (1) translates to the following variational problem,

Find u € V such that

6
/JVU~VvdV:/fvdV, Vv € V, ©
Q Q
where
V={veH(Q) :v=ygponTp}, (7.1)
Vo={ve H'(Q):v=0o0nTp}. (7.2)

We used the standard notation H'(f2) for the Sobolev space
of functions having the square-integrable gradient.

Note that, in FEM textbooks, f is usually specified as
f € H~Y(Q) (a negative-order Sobolev space dual to H'(2)).
Such an f can be highly irregular, but the integral in the right-
hand side of (6) exists. However, our final goal is to find an
estimation of f through (5), meaning that the second integral in
(5) must exist. With this in mind, we assume f € H'(Q), i.e.,
much more regular than needed to merely solve the forward
problem.

Upon FE discretization of (6), we receive the following
system of linear equations,

Fu = Bf. )

Here @ and f consist of degrees of freedom (DOFs) associated
with u and f, respectively. Matrix FE is the stiffness matrix,

B, = / oV, VG dV, ©)
Q

and B is the mass matrix,

By = / GGV,
Q

where (; are the basis functions. The appearance of the mass
matrix B in the definition of the load vector, Bf, is the direct
consequence of our choice f € H!(Q). From (8) we see that
U= Eile; thus, a discrete version of operator S is E'B.

Problem (5) reduces to the following discrete quadratic
program,

(10)

1 _ 2
minimize §HW(QE‘1Bf—d)H + e
2

~112
FLf| L an
2 2

where W is a diagonal matrix of weights, F" and () are discrete
representations of F and {Q; ﬁzé( ~1, respectively. Matrix L
is the discrete Laplacian,

L;; = / V¢ -V dV. (12)
Q
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Problem (11) is known in the optimization community as the
reduced Jacobian approach. Solution of (11) is given by

(JTW2J 4+ aL)f = JTW?d, (13)

where

J=QS=QE'B. (14)

Matrix J is commonly referred to as the Jacobian; J Tw2q
is known as the gradient. The system matrix in (13) is the
(regularised) Hessian. Many variants of this basic formulation
have been described in the literature. In particular, the norms
can be computed in non-Hilbert spaces (e.g., ||-||;), L may
include constraints imposed on the solution, the Jacobian may
be computed explicitly or implicitly (in the form of the matrix-
vector product) or can be replaced by an approximation, and
so on. In all the cases, the Jacobian .J is the main ingredient,
and major computational challenges relate to it.

It happens pretty often that Jacobian J cannot be stored
due to its sheer size. In that case, the only feasible option
is an iterative solver, such as the conjugate (CG) gradient
iterations. The matrix-vector product includes multiplication
by J followed by multiplication by J*. Thus, two forward
simulations per CG iteration are required.

Algebraic problem (13) is badly conditioned. Figure 1 pic-
tures a typical convergence, recorded for a small 2D problem.
Note the erratic behavior of the relative misfit and the slow

Rel. misfit

10—5 L L 1 1 L 1L 1 1
0 100 200 300 400 500 600 700 800 900 1000
Iteration

Figure 1: A typical convergence of the conjugate gradients
applied to (13). Convergence is almost stalled after the 200th
iteration. Convergence can be much worse or much better,
depending on the value of a.

progress of the solver after the 200th iteration. This example
demonstrates that real-life source reconstruction problems may
easily entail a huge computational burden with thousands of
forward problem solves. Another observation is that the role of
« is twofold: it controls the performance of the iterative solver
but also impacts the amount of regularization applied to the
solution. Frequently, « is set to a high value solely to reduce
computational load, but it may compromise the accuracy of
the reconstruction.
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III. THE OPTIMAL CONTROL FRAMEWORK

Let us describe our approach to the source identification
problem. We formulate (2) as the following linear-quadratic
optimal control problem,

K—1
s 1 2 2 a/ 2
minimize — w;(Qiu—d;) 4+ = FVf1©dV, (15.1
imize 3 ; ( 45 [PV, as
subject to
—div(cVu) — f =0, in Q, (15.2)
0
2% _ gy, on Ty, (15.3)
ov
U= (gp, on PD. (154)

Here the electric potential u represents the state variable, the
right-hand side f is the control variable, and d (measured data)
is the target variable. Operators Q; are defined by (3).

Next, we form the Lagrangian function as follows,

1Kfl

Llu, fA) =5 D wi(Qi(u) — di)*+

2 4
=0

« .
§/Q|]-'Vf|2dv+/ﬂ)\(—dlv(aVu)—f)dV,

(16)

where A is the adjoint state variable. At this point the La-
grangian includes constraint (15.2), but not (15.3) nor (15.4).
In view of the Green-Gauss theorem and constraint (15.3) the
following equality holds,

/ Aiv(oVu) dV = — / oVu - VAV
Q Q (17)

+/ a@)\dS—f—/ ognAdS
I'p v I'n

The first surface integral in (17) vanishes if we demand A\ = 0
on I'p. In addition, we choose ©u = gp on I'p to satisfy
constraint (15.4) . That is, we set u € V, A € V5 (see
definitions in Section II)

Summarizing the discussion above, we set up the following
Lagrangian function,

K-1
1
Llu ) =5 Y wH(Qu) ~ d + 5 [ 17V
i=0 Q
+/aVu~V)\dV—/)\de—/ ognAdS.
Q Q I'n

(18)

The necessary conditions for a triple (f, A, u) be the optimal
point of L is that the weak derivatives vanish,

}90 = 07V§0 € VO»
/)\/'l’ = OaVM € V07
Lv=0,Yv e V.

19)
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Thus, at the optimal point (f,\,u) € Vo x Vo x V, the
following Euler-Lagrange system must be satisfied,

oz/]-'Vf-(}'ch)de/)\cpdV:O Yo € Vo,
Q Q

(20.1)

/O’VU'V}LdV*/f}LdV*/ ognpdS =0 Vu eV,
Q Q I'n
(20.2)

K—1
Z w?Q;(v) (Qi(v) — dy) +/ oVA-VodV =0, Yvel.
=0 Q

(20.3)
We introduce the following bilinear forms,
Alz,y) =a [ FVz-(FVy)dV, (21.1)
Q
B(z,y) = / zydV, (21.2)
Q
E(z,y) = / oVz - VydV, (21.3)
Q
K-1
Fla,y) = Y w}Qi(x)Qi(y), (21.4)
i=0
(21.5)
and linear forms,
R(x) :/ gnzdS, (22.1)
I'n
K-1
S(z) = Z w;Qy(x)d;. (22.2)
i=0

With these notations system (20) can be rewritten in a compact
form,

A(f,9) =B'(X ) =0, VYpeW, (23.1)
~B(f, 1) + E'(u, ) = R(u), Yu € Vo, (23.2)
E(Av) + F(u,v) =S(v), Yve V. (23.3)

where superscript ¢ means transposition.

IV. DISCRETIZATION

In this section, we discuss discretization of variational
system (23) in finite-element spaces.

Domain () is divided into a set of tetrahedrons, €);,, where h
stands for the maximal diameter of tetrahedrons. We utilized
the classical nodal-based linear basis functions, which we will
denote by (;. Let Z}, be a space spanned by the basis functions.

We define
Vi ={vn € Zp :vp, =gp on T'p}, 4)
Vio = {’Uh € Zp:vp,=0o0n FD}

Thus, system (20) is approximated by the following finite-
dimensional system,

a | FVf,-(FVer)dV — | ApndV =0,

o Qn (25.1)

Von € Vho,
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/ aVuh~Vuth—/fhudV—/ ogN,uhdS:O,
Qp Q I'n

Vi € Vio,
(25.2)

K-1

Z U)?th(’l}h) (th(vh) — dl) + / oV - Vo, dV = 0,
i=0 Qn

Yo € V.

(25.3)

Here Qj; is a finite-dimensional counterpart of Q;. Operator
Qp; maps arbitrary function v, € Zj to its value at the
position of the ¢-th electrode, that is, Qp,; : Z;, — R. Thus, it
can be represented as a weighted sum of basis functions,

N-1
di = Qui =Y q;¢(wi), (26)
=0

where g; are the expansion coefficient, ;(z;) are the values of
the basis functions at the position of the i-th electrode. Each
coefficient ¢; depends only on the position of the ¢-th electrode
inside a tetrahedron and the geometry of that tetrahedron. If
x; is located exactly on the j-th grid node then (26) simplifies
to d; = (j(w;), so that Q; € RY is a row vector containing
1 at the j-th position, and zeros at the other positions.

In the standard fashion, we expand fp,up, and A, in
functions (;,

N-1 N-1 N-1
fo=Y" FiG A= NG, un= Y wil,  (27)
i=0 i=0 i=0

where f;,\;, and u; are the expansion coefficients. Substituting
(27) to (25) and recalling that space Zj, is finite-dimensional,
we get the following system of linear equations,

N-1 N-1
fioo | FVEG-VGAV =Y N [ ¢GdV =0,
j=0 n j=0 Qn
i€[0..N —1],
(28.1)
N—-1 N—-1
Y [ saav+ Y [ ove-vaav
j=0 7S G=0 7 (28.2)

:/ ognG dS, i€[0.N—1],
I'n

N-1 /K—-1 N—1
(Z wighk@»ghk(g)) +N /Q oV VG AV
=0 "

7=0 \ k=0

T

= wi Qni (&) dx,
0

i€[0..N —1].

El
Il

(28.3)
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Now we introduce the shorthand notations,
Q
By = [ GGav. (29.2)
Q
Fy; =Q"wiwaq, (29.4)
I'n
s = QTWTwWad. (29.6)
Thus, we rewrite system (28) in a compact form,
A -BT 0 f 0
-B o ET Xl=1|r (30)

O E F U s
N—— N——
A ¢ b
We exclude the essential DOFs from the system (30). That
is, we remove equations that correspond to the expansion
coefficients with predefined values, and move corresponding
elements of the summations to the right-hand side. Here and
below, we assume that (30) is the reduced system with the
essential DOFs excluded, so its size is 3n X 3n, where n < N
is the number of non-essential DOFs. Vectors f 5\, and @
contains non-essential values of f;,\;, and w;, respectively.
Matrices A,B,FE, and F' correspond to bilinear forms A,B,E,
and F, respectively. Matrix O is a zero block.

System (30) is known as the Karush-Kuhn-Tucker (KKT)
system of linear equations. All blocks in 4 are sparse R™*"
matrices. Block A is a positive-definite stiffness matrix.
Note that, if we change the stabilization term in (15) to
Jo | FfI?dV, then A turns into a mass matrix. Block E is
a symmetric positive-definite stiffness matrix. Block F' being
symmetric positive-semidefinite, rank(F) < K, where K is
number of data points (we assume that there are no duplicated
data). If data are sampled at K different nodal points and
W = I, then F has an especially simple structure: it is a
diagonal matrix with K non-zero entries equal to 1.

V. ON THE EQUIVALENCE OF THE TWO APPROACHES

In this section, we show that the normal system (11) and
the KKT system (30) provide exactly the same value of f , but
achieve it by solving two different systems of linear equations.
In different scenarios, one or the other approach appears to be
more beneficial in terms of computing resources.

As in Section II, we assume that gy = 0 to make the
presentation easier. Let us rewrite (30) as the three equations,

Af —BTXx =0, (31.1)
—Bf+ETa=0, (31.2)
EX+Q"WTWQu=Q"WTwWd. (31.3)

We eliminate A from the system using (31.3). The result is

Af+BTE'Q"WTWQua = BTET'\Q"WTWd, (32.1)

from IEEE Xplore. Restrictions apply.
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—Bf+ETa=0, (32.2)

Upon eliminating « by using (32.2) we obtain

(B'ET'Q"WTWQE'B+ A) f=BTET'\Q"WTWad.
(33)
In view of definition (14) and the fact that o, = A we see
that (33) is exactly (11).

The fact that the two approaches deliver the same estimation
of f means that the questions such as the choice of the
regularization parameter, quality of reconstruction, impact of
the noise, required density of data sampling, and others have
already been addressed in the geophysical literature. It does
not mean, however, that the two approaches are identical.
The difference between them is in the linear systems, (11) or
(30). They require different computing resources in different
scenarios. The KKT system is beneficial when the inverse
is large and an efficient preconditioner is available to take
advantage of the iterative solution of a sparse system.

VI. SOLUTION OF THE SYSTEM OF LINEAR EQUATIONS

System (30) can be solved either directly or iteratively.
Advantages of direct sparse solvers include the existence of
reliable off-the-shelf packages and a weak dependence (up to
a certain limit) of their performance on spectral characteristics
of a matrix. Common disadvantages of sparse direct solvers
are a long initialization time, high memory consumption, and
mediocre parallel scalability. It should be noted that indefinite
problems are less stable compared to positive-definite ones
and more time-consuming. Also, the performance may vary
considerably between various implementations, see review
[28], although it represents a snapshot of this field almost 15
years ago. In addition, since matrix J*J 4 oL is dense and
A is sparse, troubles with the performance of direct methods
will arise for much smaller problems in the former case. All
in all, direct sparse solvers are a viable choice for medium-
sized problems, where the number of unknowns is hundreds
of thousands on a shared-memory machine.

Iterative solvers have to be applied when the problem is
large and full factorization of A is prohibitively costly. Even
for modest problems, they may deliver a solution faster than
direct solvers. Iterative solvers, especially those based on the
short recurrence, require limited memory. The performance of
iterative methods critically depends on the preconditioning of a
system matrix. Blocks 3x3 systems of linear equations appear
in various contexts, e.g. [31, 32]. Preconditioning strategies of
such systems are highly dependent on the particular appear-
ance of that matrix and the properties of its blocks. This part of
our research has not been finished yet and will be presented in
a dedicated paper. We briefly outline some early results here.

The natural choice for (30) is MINRES [33], since A is
symmetric indefinite. MINRES should be accelerated with a
positive-definite preconditioner. However, in all the cases we
tested, the performance of a preconditioned MINRES was rel-
atively poor. Instead, we use a block-triangular preconditioner,
which is among the most efficient accelerators available (see

Authorized licensed use limited to: Moscow Institute of Physics and

a review [34]). Specifically, we applied a left block-triangular
preconditioner in the following form,

A O O
P=|-B -S O |, (34)
O E R

where S = BA™'BT, R = ES~1ET + F. Note that mass
matrix B is lumped in the definition of S. Thus, we solve the
following preconditioned system,

PrAE =P M. (35)

System (35) is non-symmetric, so a non-symmetric Krylov
solver has to be applied. We employed GMRes [33], although
BiCGStab, QMR, and some other solvers could also be used.
The application of GMRes to (34) leads to some overhead in
memory and operations comparing to MINRES applied to the
symmetric system. It, however, pays off by the much faster
convergence.

In this study, we use preconditioner (34), implemented as
three consecutive linear solves with blocks A, S, and R. That
is, x = P~y is computed via the three consecutive solves,

Axy =1, (36a)
Sxg = —y2 — Buy, (36b)
Rz3 = y3 — Exg, (36¢)

where the indices at = and y refer to the partitioning of the
linear system. We solved systems (36) exactly with the sparse
LU factorization.

It should be noted that since we used exact block solvers,
GMRes is expected to converge in a single iteration. This is
because the preconditioned matrix P! A has all eigenvalues
equal to 1. However, in practice, each of the three systems
is solved with some round-off error. Accumulation of errors
combined with a high condition number of block R leads
to an increased number of iterations. The single-iteration
convergence can be observed numerically only by explicit
factorization of matrix P, which has no advantage compared
to the direct solution of problem (30).

Our implementation is on C++ with the use of MFEM finite-
element package [35]. We utilized multi-frontal direct solver
UMFPACK [36]. All numerical experiments reported below
were performed on a laptop with Intel Core i3-6100 CPU @
2.70 GHz equipped with 8Gb RAM.

VII. NUMERICAL EXPERIMENTS

We have selected a synthetic example that demonstrates the
use of our algorithm with an irregular acquisition system on a
geological model with non-flat topography. The computational
domain had dimensions 200x200x 100 m. We have created
grids, referred to as the small and big one. The small grid
contained 150K tets; the big grid contained 376K tets see
(Figure 2). On the top of each grid, we specified condition
% = 0, whereas on the rest of the boundary we set up
u = 0 (see a comment about the “oblique” Dirichlet boundary
conditions in Introduction). The number of discrete unknowns
was 65K and 167K in the small and big problems, respectively.
The source term, f, is depicted in Figure 3(a). It consists

from IEEE Xplore. Restrictions apply.
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Figure 2: Computational grids used in the numerical experiments. The computational domain has overall physical size of
200%x200x100 m. The top surface represents hills and ditches with the altitude ranging from -13 to 16 m. Panel (a) depicts
the small grid containing 150K tetrahedrons. Panel (b) depicts the big grid with 376K tetrahedrons.

of the two smooth distributions of opposite sign centered at
(0,+30,30) m.

The synthetic data were generated using FEM, based on
discretization, presented in Section II. The forward solver
was implemented in C++ with MFEM package. We used a
uniform conductivity, o = 1, although our forward and inverse
codes support a variable conductivity. Real acquisition grids
usually follow more or less regular patterns, but in this test, we
randomly scattered 100 receivers in a disc of a radius of 90 m
to have even data coverage. The simulated electric potential in
electrodes is depicted in Figure 3(b). The synthetic data were
noise free.

We solved the two inverse problems with o = 10~°. This
choice was not optimal in any sense, so we reiterate that any
standard algorithm for choosing « [8][Section 2.5] will work
equally well for our approach (see Section V). For each model,
we compared UMFPACK direct solver and a preconditioned
GMRes. Some statistics about the linear system solution is
given in Tables II and I. The Memory column in the tables
refers to the peak memory allocated during the solution of the
linear system. These data are based on Linux process high-
level statistics. Although these could not be as accurate as a
memory profiling tool, they give valuable insight into memory
consumption. The computations were performed in the serial
mode. Both time and memory consumption were dominated
by the LU factorizations either within the direct solver or
preconditioner.

Table I: Performance of UMFPACK direct sparse solver on
the two test problems.

Problem  Num. unknwns  Time, s Memory, Gb
Small 65,469 62 2.0
Big 167,052 416 6.3

The convergence of the GMRes solver is given in Figure 4.
Surprisingly, the system had to be solved with high accuracy to
provide a reasonable source reconstruction matching the one

Table II: Performance of the preconditioned GMRes. The
restart parameter was set to 5 and 10 for the small and big
problems, respectively.

Problem  Num. unknwns  Total iters Time, s Memory, Gb
Small 65,469 14 33 1.3
Big 167,052 24 233 39

obtained with the direct solver. We set the solver to reduce
the normalized misfit down to 107!3. We attribute this to
the fact that at arbitrary iteration n, the three components of
the residual, r,, = A&, — b, are of very different scales and
get reduced with different rates during iterative updating. This
contrasts with the standard approach, where only data misfit
is reduced, and the discretized Poisson’s equation Au = f is
satisfied almost precisely via the Jacobian.

Reconstructed distribution of f were almost identical for
all cases, see Figure 5. The positive and negative extrema
essentially coincide with the location of the true source and
sink. This result is expected because the data are synthetic,
the number of measurements is satisfactory, and they are
evenly cover the area. At the same time, the amplitude of the
reconstructed f is an order of magnitude smaller compared
with the true one. We emphasize that this result would be
equal to that obtained of standard minimization (13), provided
that parameter «, the computational grid, input data, and other
parameters are the same and the linear solves are obtained
with infinite precision. Thus, it is not a drawback of our ap-
proach, but typical behavior of the standard inversion with the
“Laplacian” constraints. The main idea behind this calculation
is not that our reconstruction is better from the geophysical
standpoint (i.e., better resembles the true anomaly), but that it
is obtained in a fundamentally different way, which may be
better computationally in some scenarios.
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Figure 3: (a)The true source term f, in Am™3, that was used to simulated input data. The two distributions of the opposite
signs are placed 60 m apart at a depth of 30 m. The white lines mark level sets at £0.1 Am~3. (b) The simulated electric
potential is shown in color. The crosses mark receiver locations. The topography is shown by the black lines.
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Figure 4: Convergence of the preconditioned GMRes solver at
the two test problems. The restart parameter was set to 5 and
10 for the small and big problems, respectively.

VIII. DISCUSSION AND CONCLUSIONS

We have developed a novel approach for source reconstruc-
tion in the self-potential method. Derivation of the variational
problem and its discrete formulations for the finite-element
method are given. The main advantages of this approach are
that the resulting system of linear equations is sparse, and its
blocks are associated with the PDE. Thus, the system can
be solved either by a direct sparse solver (if the problem
is medium-size) or by a preconditioned iterative solver (for
larger problems). We have proposed a preconditioned iterative
method to solve the system of linear equations. The numerical
experiments suggested that our approach works reasonably

well. Both the direct and iterative solvers provided almost
identical solutions to the inverse problems in a reasonable
time. In the cases we tested, the iterative solution was twice
as fast as the direct one and consumed 30% less memory.
The optimal control framework might be a viable alternative
to the standard inversion, especially for large-scale problems.
We believe that it will lead to a new generation of efficient
inversion algorithms for processing real data.

Let us comment on essential aspects of the proposed ap-
proach and future research.

First of all, the study of preconditioners should be enhanced
further. We employed the exact block solvers based on the
sparse LU factorization. A natural extension would be to study
the incomplete LU (ILU) factorization. It constitutes one of
the best-known classes of preconditioners. Its application will
inevitably slow down the convergence of iterative solvers com-
pared to the exact block solver, but the computational load will
be less. The combined effect may be or may not be a reduction
of the overall runtime. It is known that the ILU preconditioner
is not spectrally equivalent to the original matrix. It, however,
would be desirable to have a method whose performance is
independent of the grid size. The multigrid should be studied
in this context, although it will be a very different approach
than the ILU.

Higher-order elements can be employed to allow for coarser
grids. Their applicability is justified because f,u, and A
are very smooth in practice. The use of coarse grids may
improve the algorithm’s performance, although some overhead
is inevitable due to an increased number of non-zero elements
in the blocks. The numerical implementation will be more
involving, but almost certainly, most programming efforts have
already been made in industrial FEM packages.

The role of the noise should be investigated further. At first
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Figure 5: Reconstructed source distributions, f. (a) - The small model, direct solver. (b) - The small model, iterative solver.
(c) - The big model, direct solver. (d) - The big model, iterative solver. The white lines mark level sets of the true source
function f at +0.1. The slight differences between the small and big grids are due to the difference in spatial sampling.

glance, introducing noise to the data will not give helpful
information since both systems (13), and (30) deliver identical
f, and the data weights W have already appeared in the
system matrices. There is, however, a subtle difference when
it comes to the iterative solution. In the standard approach, f
and u are tightly linked because they both satisfy the discrete
Poisson’s equation through the Jacobian. Only the data misfit
decreases during iterative updating, so the residual norm is a
natural criterion for the termination of the iterative process. In
our approach, the system matrix consists of three systems.
It is unknown beforehand which of these will be satisfied
earlier. It may happen that in early iterates, the computed and
measured data match each other with high accuracy, whereas,

say, Poisson’s equation is still not met. We suspect that it
is the reason why the system should be solved with very
high accuracy to deliver valuable results. This phenomenon
certainly deserves further investigation.

We note that errors in o strongly influence the recon-
struction of f. This phenomenon is well known empirically,
for example, [10]. To our knowledge, one of the most sys-
tematic studies of this topic, both theoretical and numerical,
is [37][Chapter 4]. The common consensus is that accurate
reconstruction of o, based on the inversion of a separate
electrical tomography survey, is a precursor to the high-quality
retrieval of f.

Finally, we would like to comment on the much higher
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accuracy of the reconstruction, reported in [38]. They sought
the electric potential on the inaccessible part of the boundary
(the borehole casing) given known values of the potential and
its normal derivative on the ground surface, and f = 0. Such a
problem is the Cauchy problem for Poisson’s equation. It has
a unique theoretical solution but is unstable with respect to the
data (see discussion in [39]). This problem is still ill-posed,
but the theoretical uniqueness of the solution translates to a
higher accuracy comparing to the problem of reconstructing
the right-hand side f.
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