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Abstract—This paper presents a novel numerical method for the Newton seismic full-waveform inver-
sion (FWI). The method is based on the full-space approach, where the state, adjoint state, and con-
trol variables are optimized simultaneously. Each Newton step is formulated as a PDE-constrained
optimization problem, which is cast in the form of the Karush–Kuhn–Tucker (KKT) system of linear
algebraic equitations. The KKT system is solved inexactly with a preconditioned Krylov solver. We
introduced two preconditioners: the one based on the block-triangular factorization and its variant
with an inexact block solver. The method was benchmarked against the standard truncated Newton
FWI scheme on a part of the Marmousi velocity model. The algorithm demonstrated a considerable
runtime reduction compared to the standard FWI. Moreover, the presented approach has a great
potential for further acceleration. The central result of this paper is that it establishes the feasibility of
Newton-type optimization of the KKT system in application to the seismic FWI.

Keywords: seismic full-waveform inversion, PDE-constrained optimization, Karush–Kuhn–Tucker,
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1. INTRODUCTION
The seismic full-waveform inversion (FWI) is a coefficient inverse problem aiming to estimate the sub-

surface distribution of material properties based on recorded seismic data. The FWI has emerged almost
four decades ago [1–3], and has evolved into a powerful method for reconstruction of the subsurface
properties, see reviews [4, 5].

The FWI is formulated as a Tikhonov-like minimization procedure,

(1)

where  is a function of material parameters (say, the squared P-wave slowness),  is a vector of observed
data,  is a nonlinear forward-problem operator, and  is the stabilizing term. We are interested in the
frequency-domain acoustic FWI and, thus, operator  implies the solution of Helmholtz’s equation.
Many variants of basic formulation (1) exist:  can take various forms or even be omitted, the residual can
be weighted, and so on.

Optimization (1) is usually performed by either quasi-Newton or Newton methods. The quasi-Newton
methods dominate industrial applications due to their relative numerical efficiency [6–10] (among many
others). These methods account for nonlinearity partially, usually by approximating the Hessian with a
diagonal matrix. Typical representatives of this class are the nonlinear conjugate gradient (NLCG)
method, where a diagonal matrix scales the gradients [11, 12], and L-BFGS [13]. Though computation-
ally tractable, the quasi-Newtonian methods may suffer from convergence stagnation.

The Newton methods achieve faster and more reliable convergence, which catch up with the nonlin-
earity through quadratic approximation of the target function, see [14–16]. The often-used Gauss–New-
ton variant computes the Hessian matrix approximately by linearizing the forward-problem operator. The
main disadvantage of the Newton methods applied to (1) is an enormous computational burden stemming
from the need to solve a large dense system of linear equations at each Newton iteration. The system is
solved iteratively, usually with the conjugate gradients (CG). The matrix is ill-conditioned, and therefore
each Newton (external, nonlinear) iteration may require hundreds of internal (linear) iterations. In addi-
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ITERATIVE PDE-CONSTRAINED OPTIMIZATION 955
tion, no efficient preconditioner is known to improve this matrix’s conditioning. For these reasons,
numerical implementations of the Newton FWI are far less common than the quasi-Newton ones.

It is natural to ask if we can obtain the fast Newton-like convergence with a less resource-demanding
procedure. The ultimate goal of this paper is to demonstrate that the answer is yes.

Optimization (1) is known as the reduced-space approach in the optimization community. Its alterna-
tive is the full-space approach, also known as all-at-once. In the reduced-space approach, only material
parameters  are optimized, whereas the connection between the wavefield in the medium and  is pre-
scribed by the forward-problem operator . In the full-space approach, one simultaneously optimizes the
control, state, and adjoint-state variables. Upon formulating the necessary conditions and discretizing the
PDE, one obtains a nonlinear system of algebraic equations, known as the Karush–Kuhn–Tucker (KKT)
system, which is sparse. Its sparsity is a clear advantage over formulation (1). The main challenge here is
that the problem becomes many times bigger than the reduced-space approach because the state and
adjoint-state variables for all sources are included in optimization.

The full-space approach has been introduced to geophysics in the seminal paper [17], followed by [18,
19]. Those authors cast the geophysical electromagnetic inversion as a full-space optimization problem,
derived the KKT system and applied the Newton algorithm to it. Despite spectacular results, the full-
space approach had been considered impractical for years due to the enormous size of the linear system,
arising on each Newton step. Regarding FWI, the KKT optimality conditions were derived in [15, 16], but
were viewed as a theoretical tool rather than a basis for numerical implementation.

Significant progress has been made in this direction during the last decade. Papers [20–22] report the
application of the penalty method to the FWI, marking an important step toward the full-space approach.
The penalty method has some theoretical drawbacks connected to the choice of the penalty parameter
[23] (but see recent developments [24]). The augmented Lagrangian (AL) method is a viable alternative to
the penalty method. A variant of it, known as the alternating-direction method of multiplies (ADMM) [25],
was applied to the FWI with great success, see [26, 27]. In essence, the ADMM tackles the full-space opti-
mization by making alternating steps in the state, adjoint-state, and control state spaces. Still, it is gener-
ally accepted that the main weakness of the ADMM compared to the Newton iterations is its slow conver-
gence [25].

This paper studies the full-space optimization based on applying a Newton solver to the original KKT
matrix. The crucial component of our approach is a suitable preconditioner based on a block-triangular
factorization of the permuted KKT matrix combined with approximations of individual blocks. Similar
ideas were exploited optimization with Maxwell’s equations [18] and the Stokes equation [28]; thus, this
paper extends this framework to Helmholtz’s equation. We benchmarked our method against the standard
reduced-space Gauss–Newton FWI with the internal CG solver. In the numerical experiments con-
ducted the Marmousi model, we observed the 6  speedup. The method has the potential for further accel-
eration. In particular, it will benefit from any method designed to approximate the reduced-space Hes-
sian, such as L-BFGS. The central result of this paper is that it establishes the feasibility of Newton-type
optimization of the KKT system in application to seismic FWI.

The paper is organized as follows. In Section 2, we formulate the forward problem. The reduced-space
Gauss–Newton inversion is considered in Section 3. Sections 4 and 5 are dedicated to the full-space
approach and its iterative solution. Numerical experiments are presented in Section 6. Concluding
remarks are given in Section 7.

2. THE FORWARD PROBLEM

In this section, we briefly review the forward problem. Let  be a bounded domain with bound-
ary . Consider the 2D Helmholtz’s equation in the following form:

(2)

Here,  are the right-hand side,  are the acoustic field (monochromatic pressure),  is the
circular frequency,  is the squared slowness, , where  is the speed of sound. Complex-
valued functions of one variable  and  implement the perfectly-matched layers (PML). They
deviate from 1.0 only in the damping region on the sides of the computational domain to suppress the side
reflections (see Fig. 1). On the PML implementation, see [29] and references therein.
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956 MALOVICHKO et al.

Fig. 1. Schematic representation of the computational domain with a PML region. In the PML region , . 

x

z

Core domain, X(x) = 1, Z(z) = 1

Z(z) � 1

X(x) � 1X(x) � 1

≠( ) 1X x ≠( ) 1Z z
Let us rewrite (2) with a more compact notation as follows:

(3)

where

(4)

Note that we replaced  with  in (3) because we assume that  is supported only in the core domain.
In a seismic survey, the acoustic field is excited by many monochromatic sources independent of each

other. Thus, we have a series of problems,

(5)

where index  designates the source index. Let us combine solutions  and right-hand sides  into vec-
tor variables to make the formulas even more compact. Starting from now on,  is a direct product of all

,  is a direct product of :

(6)

With these notations, a set of  problems (5) can be compactly written as

(7)

Now we introduce the observation operator  which takes the acoustic field and returns a vector of data
. We define  through the convolution with the Dirac -function (although any linear functional can be

used instead) as follows,

(8)

where  is the position of the th receiver of the th source,  is the number of receivers for the th

source, ,  is the total number of receivers for all sources.
In what follows, we will use the discrete form of the forward problem. The finite-difference (FD) dis-

cretization is assumed because it is used in our numerical experiments. However, we might as well have
performed discretization by the finite-element of spectral-element methods.

Let , , and  be finite-difference approximations of , , and , respectively. We introduce the
following notation:

(9)
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A set of discrete forward problems reads

(10)

where  is a block-diagonal matrix. Each diagonal block  of matrix  is a sparse complex non-Hermi-
tian matrix. If the PMLs are not used, then  turns into the real symmetric indefinite matrix,

(11)
where  is a discrete Laplacian,  is a diagonal mass matrix, containing values of  on its diagonal

 (it can be non-diagonal in some FD schemes [30]).

3. THE REDUCED-SPACE GAUSS–NEWTON INVERSION
In this section, we review the reduced-space Gauss–Newton inversion (RSGN). Since we will even-

tually end up with the FD approximation, and thus discrete variables will be grid functions, it is easier to
formulate the inverse problem in the discrete form (the discretize-then-optimize approach). In the finite-
element framework, a more convenient way would be to formulate the optimality conditions in function
spaces and then move on to discretization (the optimize-then-discretize approach) (see [31]).

Let  be a nonlinear operator that maps a given  to ,
(12)

Let  be a finite-dimensional operator that maps a given discrete acoustic field  to data ,
(13)

Discrete coefficient  is iterated as , where , known as the model update. On each itera-
tion,  is a solution to the following minimization problem,

(14)

Here,  is a real-valued diagonal matrix of weights designed primarily to balance signal attenuation with
offset from the source. Vector  is the data residual,

(15)

 is a matrix of the Frechét operator of  at point , i.e.

(16)

Solution to (14) satisfies

(17)

where . The following formula defines matrix G,

(18)

where  is a diagonal matrix containing forward solution  at ,

(19)
To verify (18), (19), one can subtract the two discrete Helmholtz’s equations

(20)

although the derivation can be conducted directly in the Hilbert spaces. In geophysics, the matrix

(21)
is known as the Jacobian, the matrix
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is the (regularized) Hessian, and vector

(23)

is called the gradient. Using this definitions, we rewrite (17) as
(24)

For any  matrix  is positive-definite, and thus (24) has a unique solution. It should be noted
that, even if  (singular ), then a Krylov solver will deliver a meaningful estimate of , that is, a
projection to a corresponding Krylov subspace.

The system matrix in (24) is dense and large. In real-life 3D problems, the system (24) can be solved
only iteratively, with the CG being a natural choice. We will abbreviate this algorithm as RSGN-CG. The
CG multiplies the system matrix  by a vector once per iteration. Because of (21) it implies two linear
solves per CG iteration—the forward simulation with  and the adjoint simulation with . We can
rewrite (24) as

(25)

The forward and adjoint simulations for different sources can be performed in parallel but these results
must be combined at each CG iteration.

However, the most critical problem is a very slow convergence of the CG. The system matrix (24) has
a very high condition number for all meaningful values of . Thus, tens or hundreds of forward simulations
(for all sources) may be needed to generate a good update . In addition, preconditioning of a regularized
normal system of linear equitations is notoriously difficult.

4. THE FULL-SPACE GAUSS–NEWTON INVERSION
In this section, we describe the full-space Gauss–Newton (FSGN) inversion. We start by noting that

the discrete optimization problem (14) is equivalent to the following constrained optimization problem,

(26)

Here  is the Newton iteration number,  is the update to , i.e., . The target functional
 is quadratic and bounded away from zero for any . The constraints are linear. For such problems,

known as linear-quadratic, the existence of unique state and control variables are readily established, for
example, ([32], Theorem 1.43). Moreover, since we start from the discrete formulation, the solvability is
proved simply by establishing the equivalence between the matrix form and the normal system (24), see
below.

Let us form the Lagrangian,

(27)

where  is the adjoint-state variable (a complex-valued grid function). By applying the optimality condi-
tions [32], we obtain the KKT system,

(28)

This system can be rewritten in the matrix form,
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Let us prove that (29) is equivalent to (24) for it establishes solvability of the KKT system. Using the
third equation of (29), we compute ,

(30)

Using this result, we compute  from the first equation,

(31)

where notation  means . Now we substitute (30) and (31) into the second equation of (29) and get

(32)

From (21) we see that (32) is equivalent to (24).
From the preceding discussion, it is clear that the model update  computed from either the KKT

system (29) or the normal system (24) is identical, provided that the linear systems are solved exactly. The
difference between the two approaches lies in the structure of the system matrix. The system matrix in (24)
is complex-valued, dense, Hermitian positive-definite, and relatively small. For small- to medium-size
3D problems with rigorously selected FD grids and frequencies, satisfactory results have been obtained
with the use of the sparse LU decomposition of the system  [8, 33]. In general, however, a parallel on-
the-fly application of  and  is the only option. The system matrix in (29) is sparse complex-valued
Hermitian indefinite. It is many times larger than the normal matrix, and it precludes from applying direct
solvers in any form. Its iterative solution is considered in the next section.

5. ITERATIVE SOLUTION OF THE KKT SYSTEM

In this section, we design an iterative solver for the KKT system (29). The system matrix  is can be
explicitly partitioned across sources as follows,

(33)

Block  is a positive semidefinite matrix, which is very sparse. If receivers are located at the grid nodes,
then  is a diagonal matrix where the number of non-zero entries in each  block equals the number of
data points for the th source. Block  is a block-diagonal matrix of full rank whose spectrum lies in the
left and right half-planes. Block  is positive-definite here but may become positive semidefinite if  rep-
resents the Laplacian. In our case,  and so it is diagonal. Block  is a rectangular matrix consisting
of sparse blocks. All submatrices of  are diagonal; see definition (19). The pattern of the matrix  for a
test problem consisting of 25 sources is presented in Fig. 2.

Our preconditioner is based on a block-triangular decomposition, which is one of the most efficient
strategies for preconditioning saddle-point problems. In the context of the KKT matrix, this approach was
considered in [18, 28].

The matrix  has singular (1, 1) and (3, 3) blocks, and so the direct block-LU decomposition is not
possible. Thus, we perform block-LU factorization of the permuted matrix as follows,

(34)
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Fig. 2. Partitioning (red lines) and non-zero elements (black dots) of the KKT matrix for a test problem. The problem
contains 25 sources, each system matrix is 120000  120000. The size of the  block is 72000  72000.
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where . The -factor is an excellent preconditioner since applying its inverse to the
initial (permuted) matrix results in a matrix whose spectrum consists of a single eigenvalue equal to 1. This
approach would be equivalent to the reduced-space method and has no advantages because it requires a
linear solve with the reduced Hessian H.

Let us approximate (34) by assuming , which implies . Plugging   into (34),
we get

(35)

By reversing the permutation, we define the preconditioner to the original system matrix  as follows,

(36)

The preconditioned matrix,  is non-symmetric; therefore, a non-symmetric Krylov solver is
required to solve it. We selected the GMRes and abbreviated the resulting method as FSGN-GMRes.

The preconditioner (36) has several appealing properties. First, it requires three forward solves with
matrices , , and , i.e. almost the same work as needed for a single iteration of the CG with a reduced
Hessian. Second, the  and  both split into  independent linear systems. Thus, the solutions with
blocks (1, 3) and (3, 1) can be performed in parallel. Third, the preconditioner performs approximation

, but other approximations to  are possible. In particular, one can use the L-BFGS approxima-
tion in place of block  (see [28]).

Now, we define another preconditioner, which is obtained from  by approximating  by another
matrix  as follows:
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Fig. 3. The distribution of the P-wave velocity, , used to simulate synthetic data. The numbers on the color scale are the
velocity in km/s. The maroon lines on the sides indicate the boundaries of the PML region. 
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In this paper, we utilized the incomplete LU (ILU) factorization to approximate . This choice is moti-
vated by the fact that the ILU is widely available and requires no tuning apart from selecting the fill-in
level.

We will demonstrate below that the FSGN-GMRes with the  preconditioner is superior to the
RSGN-CG. Still, it is important to recognize that more efficient strategies to approximate  are likely to
exist. In particular, the shifted-Laplacian preconditioner leveraged with the multigrid [34] deserves a ded-
icated study.

6. NUMERICAL EXPERIMENTS
This section is dedicated to numerical experiments. The optimization part of FWI was programmed in

Python, whereas the forward and adjoint simulation problem is coded in C++. The forward problem was
solved directly with a sparse LU factorization. All calculations were serial.

We conducted numerical experiments using a part of the Marmousi velocity model (Fig. 3). This
P-wave velocity distribution was used in the data simulation, representing the geologic medium we want
to reconstruct.

The purpose of the first experiment was to compare, inside a single GN step, the performance of
the CG applied to the normal system matrix with the preconditioned GMRes applied to the KKT matrix.
With the GMRes, we checked two preconditioners,  and . The velocity distribution shown in Fig. 4a
was the initial model for the inversion. The computed slowness updates are compared in Figs. 4b–4d.

The preconditioner  was created by making use of ILU with the fill-in parameter 21. It is not possible
to compare the CG and GMRes directly, because the CG computes  at each iteration,
whereas GMRes computes . To make the comparison, we separately computed values
of  from the GMRes iterates . The convergence of the iterative methods is presented in Fig. 5. The
CG and GMRes achieved approximately the same tolerance on iterations 19 and 30, respectively (Fig. 5).
As expected, all methods generated almost identical updates. The convergence rate of the CG is the same
as that of the GMRes with the , although the GMRes happened to reach the desired tolerance by 3 iter-
ations faster. The convergence of the GMRes with  is slower than that with , but the cost is much lesser.
The performance of the algorithms is compared in Table 1. We see the dramatic acceleration of matrix-
vector multiplication in the GMRes compared to the CG. This is because the linear solves with factorized
matrices  and  inside  are much cheaper than the linear solves with  and  during the CG matrix-
vector multiplication. Another observation is that we needed a high value of fill-in (we used 21) to have an
acceptable approximation .

In the second numerical experiment, we demonstrate that our approach serves as an efficient engine
for the multi-frequency FWI. The data were simulated at frequencies from 5 to 40 Hz with a step of 2.5 Hz.
At each frequency in the sequence, from lower to higher, a single GN step was performed, and the updated
model was passed to the next frequency. The regularization parameter  was changing linearly from 10 to
1E5. The number of internal GMRes iterations was set to 30. As indicated in Fig. 6, the data misfit was
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Fig. 4. Comparison of the two slowness updates computed at the end of a single GN iteration. Panel (a) shows the initial
velocity distribution. Panel (b) depicts the slowness update obtained by applying the CG solver to the normal system of
linear equations. Panel (c) shows the slowness update by the GMRes solver with  applied to the KKT system. Panel (d)
same as (c) but with preconditioner . Note that in (a) color represents the P-wave velocity in km/s, whereas in (b–d)

color represents update to the squared slowness in . 
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improved after the inversion. The improvement becomes more pronounced at higher frequencies because
the data magnitudes increase with the frequency and the initial model describes high-frequency data very
poorly.

The initial velocity model, several intermediate models, and the final model are presented in Fig. 7. In
this numerical experiment, we set the term  in (29) to zero and, thus, the algorithm was penalizing
the norm of the update , not the updated model . This was the reason for the high-velocity build-
up at . We stress again that identical FWI results would have been obtained if we had applied the

− nLs
δs + δns s

= 2500X
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Fig. 5. Evolution of data misfit for the CG applied to the normal system and the preconditioned GMRes applied to the
KKT matrix. The Y-axis represents the quantity . 
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Table 1. Linear solvers comparison. The column “CG” refers to the CG applied to the normal system of linear
equations, “GMRes-full” is the GMRes applied to the KKT matrix preconditioned with , “GMRes-approx” is
the GMRes preconditioned with 

CG GMRes-full GMRes-approx

Iterations 19 16 30
Time per iteration, s 264 267 18
ILU initialization, s 0 0 121
Total time, s 4800 5391 834

3
�3
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Fig. 7. The initial velocity distribution (a) and updated distributions (b)–(f) at different frequencies. The color scales here
and in Fig. 3 are identical. The X- and Z-axis are marked in meters. Similar, if not identical, updates would have been
obtained if we had performed the standard RSGN-CG optimization with the same accuracy of data fit.
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standard RSGN-CG optimization (provided, of course, that the values of error  match in both
approaches). The difference between the two approaches is in their performance.

7. CONCLUSIONS

This paper proposes a new numerical method for the seismic FWI, based on the full-space approach.
Prior work has demonstrated that the full-space approach can be used as a framework for efficient wave-
form inversion algorithms. Those works have focused either on the penalty method with the primal-dual

cgE
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descend optimization or the AL approach with the ADMM optimization procedure. These approaches
have demonstrated impressive results, but may suffer from the slow convergence compared to the Newton
iterations [25].

This paper studies the iterative full-space FWI by the Newton method. A preconditioned Krylov solver
is applied to the KKT system on each Newton iteration. Our method computes the material parameter
updates identical to those calculated by inverting the reduced Hessian, provided that the linear systems are
solved exactly. The critical element of our approach is a special preconditioner. The preconditioned iter-
ative algorithm requires two forward simulations (exact or approximate) at each iteration plus an inexpen-
sive solve with the constraint matrix . We considered two variants of the preconditioner: preconditioner

 computes linear solves with  and  exactly, whereas preconditioner  computes the inexact solves.
A single application of  should therefore have almost the same cost compared to a single iteration of the
CG applied to the normal system. Our numerical experiments indicated that these two methods indeed
have very close performance. On the other hand, a single application of  is much cheaper. In our numer-
ical experiments, this approach reduced the execution time considerably.

For a real-scale 3D FWI, several problems need to be addressed. First, the forward and adjoint simu-
lations need to be based on the theory of linear elasticity, so it remains to be shown that our approach
works for elastic FWI. Second, direct linear solvers become unfeasible in the 3D applications, even for the
acoustic equations, not to mention the linear elasticity. Thus, a reliable preconditioned iterative solver
should be applied for the forward and adjoint simulations. Substantial progress in this direction has been
made; see [29] and references therein. In principle, any preconditioner designed for the forward simula-
tion can be used inside . Third, the convergence can be improved by a more sophisticated approximation
of the reduced Hessian, such as the L-BFGS or the background Hessian. Virtually any method designed
to accelerate the reduced-space Newton method can be used to compute the H-block solve within our
approach. Finally, using the BiCGStab instead of the GMRes will eliminate the memory needed to store
GMRes iterates between restarts. Future work, therefore, should include a study of these options.
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